Periodic derivative of solutions to nonlinear differential equations
Czechoslovak Mathematical Journal (1990)
- Volume: 40, Issue: 3, page 353-360
- ISSN: 0011-4642
Access Full Article
topHow to cite
topAndres, Ján. "Periodic derivative of solutions to nonlinear differential equations." Czechoslovak Mathematical Journal 40.3 (1990): 353-360. <http://eudml.org/doc/13857>.
@article{Andres1990,
author = {Andres, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlinear oscillations; D-periodic solutions; topological degree theory},
language = {eng},
number = {3},
pages = {353-360},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic derivative of solutions to nonlinear differential equations},
url = {http://eudml.org/doc/13857},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Andres, Ján
TI - Periodic derivative of solutions to nonlinear differential equations
JO - Czechoslovak Mathematical Journal
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 3
SP - 353
EP - 360
LA - eng
KW - nonlinear oscillations; D-periodic solutions; topological degree theory
UR - http://eudml.org/doc/13857
ER -
References
top- H. Poincaré, Lés méthodes nouvelles de la mécanique céleste, Gauthiers-Villars, Paris, 1892.
- M. Farkas, On stability and geodesies, Ann. Univ. Sci. Budapest. Rol. Eötvös Nom. 11 (1968), 145-159. (1968) MR0240408
- R. B. Barrar, 10.1086/109672, Astronom. J. 70, 1 (1965), 3 - 4. (1965) MR0187899DOI10.1086/109672
- H. E. Edgerton, P. Fourmarier, 10.1109/T-AIEE.1931.5055868, Trans. A.I.E.E. 50 (1931), 769-778. (1931) DOI10.1109/T-AIEE.1931.5055868
- P. Meystre, Free-electron lasers: An introduction, In ,,Laser Physics (D. F. Walls and J. D. Harvey, ed.),". Academic Press, Sydney-New York-London-Toronto-San Francisco, 1980. (1980)
- M. Farkas, Controllably periodic perturbations of autonomous systems, Acta Math. Acad. Sci. Hungar. 22, 3-4 (19 1), 337-348. (19 1) MR0296424
- M. Farkas, Determination of controllably periodic perturbed solutions by Poincaré's method, Stud. Sci. Math. Hungar. 7 (1972), 257-266. (1972) MR0346266
- J. Andres, Solution with periodic second derivative of a certain third order differential equation, Math. Slovaca 37, 3 (1987), 239-245. (1987) Zbl0629.34048MR1127107
- R. Reissig, Phasenraum-Methoden zum Studium nichtlinearen Differentialgleichungen, Jber. Deutsch. Math. 75 (1974), 130-139. (1974) MR0477300
- S. Fučík J. Nečas J. Souček, V. Souček, Spectral Analysis of Nonlinear Operators, LNM 346, Springer-Verlag, Berlin-Heidelberg-New York, 1973. (1973) MR0467421
- J. Mawhin, 10.1016/0022-247X(72)90025-X, J. Math. Anal. Appl. 40 (1972), 20-29. (1972) Zbl0245.34035MR0313587DOI10.1016/0022-247X(72)90025-X
- C. H. Hardy J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, London, 1951. (1951)
- J. Andres, On local -cycles to certain third order nonlinear differential equations, Fasc. Math. 17 (1987), 49-54. (1987) Zbl0648.34043MR0942319
- S. N. Chow, A. Lasota, 10.1016/0022-0396(73)90051-X, J. Diff. Eqns 14, 2 (1973), 326-337. (1973) Zbl0285.34009MR0330598DOI10.1016/0022-0396(73)90051-X
- S. H. Chang, 10.1016/0022-247X(76)90014-7, J. Math. Anal. Appl. 56 (1976), 165-171. (1976) Zbl0338.34034MR0419944DOI10.1016/0022-247X(76)90014-7
- R. Reissig, Periodic solutions of certain higher order differential equations, Nonlinear Analysis, T.M.A. 2, 5 (1978), 635-642. (1978) Zbl0385.34019MR0512159
Citations in EuDML Documents
top- Ján Andres, A useful proposition to nonlinear differential systems with a solution of the prescribed asymptotic properties
- Lech Górniewicz, Periodic problems for ODEs via multivalued Poincaré operators
- Ján Andres, Solution with periodic second derivative of a certain third order differential equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.