Periodic derivative of solutions to nonlinear differential equations

Ján Andres

Czechoslovak Mathematical Journal (1990)

  • Volume: 40, Issue: 3, page 353-360
  • ISSN: 0011-4642

How to cite

top

Andres, Ján. "Periodic derivative of solutions to nonlinear differential equations." Czechoslovak Mathematical Journal 40.3 (1990): 353-360. <http://eudml.org/doc/13857>.

@article{Andres1990,
author = {Andres, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlinear oscillations; D-periodic solutions; topological degree theory},
language = {eng},
number = {3},
pages = {353-360},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic derivative of solutions to nonlinear differential equations},
url = {http://eudml.org/doc/13857},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Andres, Ján
TI - Periodic derivative of solutions to nonlinear differential equations
JO - Czechoslovak Mathematical Journal
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 3
SP - 353
EP - 360
LA - eng
KW - nonlinear oscillations; D-periodic solutions; topological degree theory
UR - http://eudml.org/doc/13857
ER -

References

top
  1. H. Poincaré, Lés méthodes nouvelles de la mécanique céleste, Gauthiers-Villars, Paris, 1892. 
  2. M. Farkas, On stability and geodesies, Ann. Univ. Sci. Budapest. Rol. Eötvös Nom. 11 (1968), 145-159. (1968) MR0240408
  3. R. B. Barrar, 10.1086/109672, Astronom. J. 70, 1 (1965), 3 - 4. (1965) MR0187899DOI10.1086/109672
  4. H. E. Edgerton, P. Fourmarier, 10.1109/T-AIEE.1931.5055868, Trans. A.I.E.E. 50 (1931), 769-778. (1931) DOI10.1109/T-AIEE.1931.5055868
  5. P. Meystre, Free-electron lasers: An introduction, In ,,Laser Physics (D. F. Walls and J. D. Harvey, ed.),". Academic Press, Sydney-New York-London-Toronto-San Francisco, 1980. (1980) 
  6. M. Farkas, Controllably periodic perturbations of autonomous systems, Acta Math. Acad. Sci. Hungar. 22, 3-4 (19 1), 337-348. (19 1) MR0296424
  7. M. Farkas, Determination of controllably periodic perturbed solutions by Poincaré's method, Stud. Sci. Math. Hungar. 7 (1972), 257-266. (1972) MR0346266
  8. J. Andres, Solution with periodic second derivative of a certain third order differential equation, Math. Slovaca 37, 3 (1987), 239-245. (1987) Zbl0629.34048MR1127107
  9. R. Reissig, Phasenraum-Methoden zum Studium nichtlinearen Differentialgleichungen, Jber. Deutsch. Math. 75 (1974), 130-139. (1974) MR0477300
  10. S. Fučík J. Nečas J. Souček, V. Souček, Spectral Analysis of Nonlinear Operators, LNM 346, Springer-Verlag, Berlin-Heidelberg-New York, 1973. (1973) MR0467421
  11. J. Mawhin, 10.1016/0022-247X(72)90025-X, J. Math. Anal. Appl. 40 (1972), 20-29. (1972) Zbl0245.34035MR0313587DOI10.1016/0022-247X(72)90025-X
  12. C. H. Hardy J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, London, 1951. (1951) 
  13. J. Andres, On local ω -cycles to certain third order nonlinear differential equations, Fasc. Math. 17 (1987), 49-54. (1987) Zbl0648.34043MR0942319
  14. S. N. Chow, A. Lasota, 10.1016/0022-0396(73)90051-X, J. Diff. Eqns 14, 2 (1973), 326-337. (1973) Zbl0285.34009MR0330598DOI10.1016/0022-0396(73)90051-X
  15. S. H. Chang, 10.1016/0022-247X(76)90014-7, J. Math. Anal. Appl. 56 (1976), 165-171. (1976) Zbl0338.34034MR0419944DOI10.1016/0022-247X(76)90014-7
  16. R. Reissig, Periodic solutions of certain higher order differential equations, Nonlinear Analysis, T.M.A. 2, 5 (1978), 635-642. (1978) Zbl0385.34019MR0512159

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.