# Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces

Czechoslovak Mathematical Journal (1991)

- Volume: 41, Issue: 2, page 288-296
- ISSN: 0011-4642

## Access Full Article

top## How to cite

topZajíček, Luděk. "Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces." Czechoslovak Mathematical Journal 41.2 (1991): 288-296. <http://eudml.org/doc/13927>.

@article{Zajíček1991,

author = {Zajíček, Luděk},

journal = {Czechoslovak Mathematical Journal},

keywords = {-porous set; cone-small sets; maximal monotone operator; Asplund space},

language = {eng},

number = {2},

pages = {288-296},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces},

url = {http://eudml.org/doc/13927},

volume = {41},

year = {1991},

}

TY - JOUR

AU - Zajíček, Luděk

TI - Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces

JO - Czechoslovak Mathematical Journal

PY - 1991

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 41

IS - 2

SP - 288

EP - 296

LA - eng

KW - -porous set; cone-small sets; maximal monotone operator; Asplund space

UR - http://eudml.org/doc/13927

ER -

## References

top- N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190. (1976) Zbl0342.46034MR0425608
- P. S. Kenderov, The set-valued monotone mappings are almost everywhere single-valued, C. R. Acad. Bulgare Sci. 27 (1974), 1173-1175. (1974) Zbl0339.47024MR0358447
- P. S. Kenderov, Monotone operators in Asplund spaces, C. R. Acad. Bulgare Sci. 30 (1977), 963-964. (1977) Zbl0377.47036MR0463981
- S. V. Konjagin, On the points of the existence and nonunicity of elements of the best approximation, (in Russian), in Teorija funkcij i ee prilozhenija, P. L. Uljanov ed., Izdatelstvo Moskovskovo Universiteta, pp. 38-43, Moscow (1986). (1986)
- K. Kuratowski, Topology, Vol. I, (transl.), Academic Press, New York (1966). (1966) Zbl0158.40901MR0217751
- R. R. Phelps, Convex functions, monotone operators and differentiability, Lect. Notes in Math., Nr. 1364, Springer-Verlag, (1989). (1989) Zbl0658.46035MR0984602
- D. Preiss, L. Zajíček, Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202-204. (1984) Zbl0521.46034MR0740171
- D. Preiss, L. Zajíček, Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Proc. 11th Winter School, Suppl. Rend. Circ. Mat. Palermo, Ser. II, No. 3 (1984), 219-223. (1984) Zbl0547.46026MR0744387
- L. Zajíček, On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (104) (1979), 340-348. (1979) Zbl0429.46007MR0536060
- L. Zajíček, Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space, Czechoslovak Math. J. 33 (108), (1983), 292-308. (1983) Zbl0527.41028MR0699027
- L. Zajíček, Porosity and $\sigma $-porosity, Real Analysis Exchange 13 (1987-88), 314 - 350. (1987) Zbl0666.26003MR0943561
- L. Zajíček, On the points of multivaluedness of metric projections in separable Banach spaces, Comment. Math. Univ. Carolinae 19 (1978), 513-523. (1978) Zbl0382.46007MR0508958

## Citations in EuDML Documents

top- Martin Heisler, Singlevaluedness of monotone operators on subspaces of GSG spaces
- Miroslav Zelený, Jan Pelant, The structure of the $\sigma $-ideal of $\sigma $-porous sets
- Luděk Zajíček, Miroslav Zelený, On the complexity of some $\sigma $-ideals of $\sigma $-P-porous sets
- Martin Rmoutil, Products of non-$\sigma $-lower porous sets

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.