Products of non--lower porous sets
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 1, page 205-217
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRmoutil, Martin. "Products of non-$\sigma $-lower porous sets." Czechoslovak Mathematical Journal 63.1 (2013): 205-217. <http://eudml.org/doc/252491>.
@article{Rmoutil2013,
abstract = {In the present article we provide an example of two closed non-$\sigma $-lower porous sets $A, B \subseteq \mathbb \{R\} $ such that the product $A\times B$ is lower porous. On the other hand, we prove the following: Let $X$ and $Y$ be topologically complete metric spaces, let $A\subseteq X$ be a non-$\sigma $-lower porous Suslin set and let $B\subseteq Y$ be a non-$\sigma $-porous Suslin set. Then the product $A\times B$ is non-$\sigma $-lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non-$\sigma $-lower porous sets in topologically complete metric spaces.},
author = {Rmoutil, Martin},
journal = {Czechoslovak Mathematical Journal},
keywords = {topologically complete metric space; abstract porosity; $\sigma $-porous set; $\sigma $-lower porous set; Cartesian product; lower porosity; -lower porosity},
language = {eng},
number = {1},
pages = {205-217},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Products of non-$\sigma $-lower porous sets},
url = {http://eudml.org/doc/252491},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Rmoutil, Martin
TI - Products of non-$\sigma $-lower porous sets
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 205
EP - 217
AB - In the present article we provide an example of two closed non-$\sigma $-lower porous sets $A, B \subseteq \mathbb {R} $ such that the product $A\times B$ is lower porous. On the other hand, we prove the following: Let $X$ and $Y$ be topologically complete metric spaces, let $A\subseteq X$ be a non-$\sigma $-lower porous Suslin set and let $B\subseteq Y$ be a non-$\sigma $-porous Suslin set. Then the product $A\times B$ is non-$\sigma $-lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non-$\sigma $-lower porous sets in topologically complete metric spaces.
LA - eng
KW - topologically complete metric space; abstract porosity; $\sigma $-porous set; $\sigma $-lower porous set; Cartesian product; lower porosity; -lower porosity
UR - http://eudml.org/doc/252491
ER -
References
top- Engelking, R., General Topology. Rev. and Compl. Ed., Sigma Series in Pure Mathematics 6, Heldermann Berlin (1989). (1989) MR1039321
- Koc, M., Zajíček, L., On Kantorovich's result on the symmetry of Dini derivatives, Commentat. Math. Univ. Carol. 51 (2010), 619-629. (2010) Zbl1224.26021MR2858265
- Zajíček, L., 10.2307/44151885, Real Anal. Exch. 13 (1987/88), 314-350. (1987) Zbl0666.26003MR0943561DOI10.2307/44151885
- Zajíček, L., Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces, Czech. Math. J. 41 (1991), 288-296. (1991) Zbl0768.58005MR1105445
- Zajíček, L., Products of non--porous sets and Foran systems, Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505. (1996) Zbl0877.54023MR1428780
- Zajíček, L., 10.1155/AAA.2005.509, Abstr. Appl. Anal. 5 (2005), 509-534. (2005) MR2201041DOI10.1155/AAA.2005.509
- Zajíček, L., Zelený, M., 10.1155/AAA.2005.221, Abstr. Appl. Anal. 3 (2005), 221-227. (2005) Zbl1091.28001MR2197116DOI10.1155/AAA.2005.221
- Zelený, M., Pelant, J., The structure of the -ideal of -porous sets, Commentat. Math. Univ. Carol. 45 (2004), 37-72. (2004) Zbl1101.28001MR2076859
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.