Irreducible Characters of Semisimple Lie Groups III. Proof of Kazhdan-Lusztig Conjecture in the Integral Case.

David A., Jr. Vogan

Inventiones mathematicae (1983)

  • Volume: 71, page 381-418
  • ISSN: 0020-9910; 1432-1297/e

How to cite

top

Vogan, David A., Jr.. "Irreducible Characters of Semisimple Lie Groups III. Proof of Kazhdan-Lusztig Conjecture in the Integral Case.." Inventiones mathematicae 71 (1983): 381-418. <http://eudml.org/doc/142996>.

@article{Vogan1983,
author = {Vogan, David A., Jr.},
journal = {Inventiones mathematicae},
keywords = {highest weight modules; infinitesimal character; Lie algebra homology; localization theory; irreducible Harish-Chandra modules},
pages = {381-418},
title = {Irreducible Characters of Semisimple Lie Groups III. Proof of Kazhdan-Lusztig Conjecture in the Integral Case.},
url = {http://eudml.org/doc/142996},
volume = {71},
year = {1983},
}

TY - JOUR
AU - Vogan, David A., Jr.
TI - Irreducible Characters of Semisimple Lie Groups III. Proof of Kazhdan-Lusztig Conjecture in the Integral Case.
JO - Inventiones mathematicae
PY - 1983
VL - 71
SP - 381
EP - 418
KW - highest weight modules; infinitesimal character; Lie algebra homology; localization theory; irreducible Harish-Chandra modules
UR - http://eudml.org/doc/142996
ER -

NotesEmbed ?

top

You must be logged in to post comments.