A comparison theorem for -homology
Henryk Hecht; Joseph L. Taylor
Compositio Mathematica (1993)
- Volume: 86, Issue: 2, page 189-207
- ISSN: 0010-437X
Access Full Article
topHow to cite
topHecht, Henryk, and Taylor, Joseph L.. "A comparison theorem for $\mathfrak {n}$-homology." Compositio Mathematica 86.2 (1993): 189-207. <http://eudml.org/doc/90217>.
@article{Hecht1993,
author = {Hecht, Henryk, Taylor, Joseph L.},
journal = {Compositio Mathematica},
keywords = {connected semisimple Lie group; complexification; Lie algebra; maximal compact subgroup; flag variety; Borel subalgebras; Harish-Chandra module},
language = {eng},
number = {2},
pages = {189-207},
publisher = {Kluwer Academic Publishers},
title = {A comparison theorem for $\mathfrak \{n\}$-homology},
url = {http://eudml.org/doc/90217},
volume = {86},
year = {1993},
}
TY - JOUR
AU - Hecht, Henryk
AU - Taylor, Joseph L.
TI - A comparison theorem for $\mathfrak {n}$-homology
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 86
IS - 2
SP - 189
EP - 207
LA - eng
KW - connected semisimple Lie group; complexification; Lie algebra; maximal compact subgroup; flag variety; Borel subalgebras; Harish-Chandra module
UR - http://eudml.org/doc/90217
ER -
References
top- 1 A. Beilinson and J. Bernstein, Localization de g-modules, C.R. Acad. Sci. Paris292 (1981), 15-18. Zbl0476.14019MR610137
- 2 A. Beilinson and J. Bernstein, A generalization of Casselman's submodule theorem, Representation Theory of Reductive Groups, Progress in Mathematics, vol. 40, Birkhäuser, Boston, 1983. Zbl0526.22013
- 3 A. Borel et al., Algebraic D-modules, Perspectives in Mathematics, vol. 2, Birkhäuser, Boston, 1987. Zbl0642.32001
- 4 W. Casselman, Jaquet modules for real semisimple Lie groups, Proceedings of the International Congress of Mathematicians, Helsinki, 1978, pp. 557-563. Zbl0425.22019MR562655
- 5 W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math., vol. 41, (1989), 385-438. Zbl0702.22016MR1013462
- 6 W. Casselman and D. Miličić, Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J.49 (1982), 869-930. Zbl0524.22014MR683007
- 7 W. Casselman and M.S. Osborne, The n-cohomology of representations with an infinitesimal character, Compositio Math.31 (1975), 219-227. Zbl0343.17006MR396704
- 8 P. Deligne, Équations Differentielles á Points Singuliers Réguliers, Lecture Notes in Mathematics163, Springer Verlag, Berlin, 1973. Zbl0244.14004MR417174
- 9 H. Hecht and D. Miličić, Cohomological dimension of localization functor, Proc. Amer. Math. Soc., vol. 108, (1990), 249-254. Zbl0714.22011MR984793
- 10 H. Hecht, D. Miličić, W. Schmid, and J.A. Wolf, Localization and standard modules for real semisimple Lie groups I: The duality theorem, Inventiones Math.90 (1987), 297-332. Zbl0699.22022MR910203
- 11 H. Hecht and W. Schmid, Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math.151 (1983), 49-151. Zbl0523.22013MR716371
- 12 H. Hecht and W. Schmid, On asymptotics and n-homology of Harish-Chandra modules, Journal für die reine und angewandte Mathematik343 (1983), 169-173. Zbl0517.22013MR705884
- 13 H. Hecht and J.L. Taylor, Analytic localization of group representations, Advances in Mathematics79 (1990), 139-212. Zbl0701.22005MR1033077
- 14 T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan31 (1979), 332-357. Zbl0396.53025MR527548
- 15 T. Matsuki, Closure Relations for Orbits on Affine Symmetric Spaces under the Action of Minimal Parabolic Subgroups, Advanced Studies in Pure Mathematics, vol. 14, 1988 pp. 541-559. Zbl0723.22020MR1039852
- 16 T. Matsuki, Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits, Hirosh. Math. Journal18 (1988), 59-67. Zbl0652.53035MR935882
- 17 D. Miličić, Asymptotic behavior of matrix coefficients of the discrete series, Duke Math. J.44 (1977), 59-88. Zbl0398.22022
- 18 D. Miličić, Localization and Representation Theory of Reductive Lie Groups (mimeographed notes).
- 19 W. Schmid, Boundary value problems for group invariant differential equations, Elie Cartan et les mathématiques d'ajourd'hui, Astérique, 1983. Zbl0621.22014
- 20 W. Schmid and J.A. Wolf, Globalization of Harish-Chandra modules, Bull. Amer. Math. Soc.17 (1987), 117-120. Zbl0649.22010MR888885
- 21 J.P. Serre, Géométrie algébraique et géométrie analytique, Ann. Inst. Fourier6 (1956), 1-42. Zbl0075.30401MR82175
- 22 D. Vogan, Irreducible characters of semisimple Lie groups III: proof of the Kazhdan-Lusztig conjectures in the integral case, Inventiones Math.71 (1983), 381-417. Zbl0505.22016MR689650
- 23 N. Wallach, Asymptotic expansion of generalized matrix entries of representations of real reductive groups, Lie group representations I, (Proceedings, University of Maryland 1982-1983), Lecture Notes in Mathematics1024, Springer Verlag, New York, 1983. Zbl0553.22005MR727854
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.