Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules

David H. Collingwood

Compositio Mathematica (1995)

  • Volume: 96, Issue: 1, page 1-62
  • ISSN: 0010-437X

How to cite

top

Collingwood, David H.. "Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules." Compositio Mathematica 96.1 (1995): 1-62. <http://eudml.org/doc/90355>.

@article{Collingwood1995,
author = {Collingwood, David H.},
journal = {Compositio Mathematica},
keywords = {subrepresentation theorem; Langlands classification; nonmaximal embeddings; irreducible admissible representation; semisimple Lie group; principal series representation; Whittaker models; Matumoto's conjecture; irreducible Harish-Chandra modules; matrix coefficient asymptotics; matrix groups; nilpotent orbit condition},
language = {eng},
number = {1},
pages = {1-62},
publisher = {Kluwer Academic Publishers},
title = {Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules},
url = {http://eudml.org/doc/90355},
volume = {96},
year = {1995},
}

TY - JOUR
AU - Collingwood, David H.
TI - Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 96
IS - 1
SP - 1
EP - 62
LA - eng
KW - subrepresentation theorem; Langlands classification; nonmaximal embeddings; irreducible admissible representation; semisimple Lie group; principal series representation; Whittaker models; Matumoto's conjecture; irreducible Harish-Chandra modules; matrix coefficient asymptotics; matrix groups; nilpotent orbit condition
UR - http://eudml.org/doc/90355
ER -

References

top
  1. [1] D. Barbasch and D. Vogan: Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra80 (1983) 350-382. Zbl0513.22009MR691809
  2. [2] B. Boe and D. Collingwood: A multiplicity one theorem for holomorphically induced representations, Math. Z.192 (1986) 265-282. Zbl0598.22009MR840829
  3. [3] B. Boe and D. Collingwood: Multiplicity free categories of highest weight representations I, Comm. Alg.18 (1990) 947-1032. Zbl0757.17005MR1059940
  4. [4] B. Boe and D. Collingwood: Multiplicity free categories of highest weight representations II, Comm. Alg.18 (1990) 1033-1070. Zbl0757.17005MR1059940
  5. [5] B. Boe and D. Collingwood: Enright-Shelton theory and Vogan's problem for generalized principal series, Mem. Amer. Math. Soc.486 (1993). Zbl0794.22010MR1129375
  6. [6] W. Borho: Lie Algebras and Related Topics. Canadian Math. Soc. Conf. Proc.5, Providence, 1986. MR832193
  7. [7] L. Casian and D. Collingwood: The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z.195 (1987) 581-600. Zbl0624.22010MR900346
  8. [8] L. Casian and D. Collingwood: Complex geometry and asymptotics for Harish-Chandra modules of real reductive Lie groups I, Trans. Amer. Math. Soc.300 (1987) 73-107. Zbl0657.22016MR871666
  9. [9] L. Casian and D. Collingwood: Complex geometry and asymptotics for Harish-Chandra modules of real reductive Lie groups II, Invent. Math.86 (1986) 255-286. Zbl0657.22017MR856846
  10. [10] L. Casian and D. Collingwood: Complex geometry and asymptotics for Harish-Chandra modules of real reductive Lie groups III: Estimates on n-homology, J. Algebra116 (1988) 415-456. Zbl0723.22016MR953161
  11. [11] L. Casian and D. Collingwood: Weight filtrations for induced representations of real reductive Lie groups, Adv. Math.73 (1989) 79-146. Zbl0676.22011MR979588
  12. [12] D. Collingwood: Harish-Chandra modules with the unique embedding property, Trans. Amer. Math. Soc.281 (1984) 1-48. Zbl0536.22019MR719657
  13. [13] D. Collingwood: Representations of rank one Lie groups, Pitman, Boston, 1985. Zbl0647.22007MR853731
  14. [14] D. Collingwood: Representations of rank one Lie groups II, Mem. Amer. Math. Soc.387 (1988). Zbl0657.22015MR954949
  15. [15] D. Collingwood: Jacquet modules for semisimple Lie groups having Verma module filtrations, J. Algebra136 (1991) 353-375. Zbl0716.22005MR1089304
  16. [16] D. Collingwood, R. Irving and B. Shelton: Filtrations on generalized Verma modules for Hermitian symmetric pairs, J. reine angew. Math.383 (1988) 54-86. Zbl0631.22014MR921987
  17. [17] D. Collingwood and W. McGovern: Nilpotent Orbits in Semisimple Lie Algebras, Van NostrandReinhold, New York, 1993. Zbl0972.17008MR1251060
  18. [18] D. Garfinkle: The annihilators of irreducible Harish-Chandra modules for SU(p, q) and other type An-1 groups, Amer. J. Math.115 (1993) 305-369. Zbl0786.22023MR1216434
  19. [19] R. Goodman and N. Wallach: Whittaker vectors and conical vectors, J. Funct. Anal.39 (1980) 199-279. Zbl0475.22010MR597811
  20. [20] H. Hecht and W. Schmid: Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math.151 (1983) 49-151. Zbl0523.22013MR716371
  21. [21] R. Irving: Projective modules in the category Os: Self-duality, Trans. Amer. Math. Soc.291 (1985) 701—732. Zbl0594.17005
  22. [22] B. Kostant: On Whittaker vectors and representation theory, Invent. Math.48 (1978) 101-184. Zbl0405.22013MR507800
  23. [23] G. Lusztig: A class of irreducible representations of a Weyl group II, Indag. Math.44 (1982) 219-226. Zbl0511.20034MR662657
  24. [24] G. Lusztig and D. Vogan: Singularities of closures of K-orbits on flag manifolds, Inv. Math.71 (1983) 365-379. Zbl0544.14035MR689649
  25. [25] H. Matumoto: Whittaker vectors and associated varieties, Invent. Math.89 (1987) 219-224. Zbl0633.17006MR892192
  26. [26] H. Matumoto: Whittaker vectors and the Goodman—Wallach operators, Acta Math.161 (1988) 183-241. Zbl0723.22019
  27. [27] H. Matumoto: C-∞-Whittaker vectors for complex semisimple Lie groups, wave front sets, and goldie rank polynomial representations, Ann. Scient. Ec. Norm. Sup.23 (1990) 311-367. Zbl0760.22017
  28. [28] H. Matumoto: C-∞-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets, Comp. Math.82 (1992) 189-244. Zbl0797.22005
  29. [29] R. Proctor: Classical Bruhat orders and lexicographic shellability, J. Algebra77 (1982) 104-126. Zbl0486.06002MR665167
  30. [30] W. Soergel: Equivalences de certaines de g-modules, C.R. Acad. Sci. Paris303 (1986). Zbl0623.17005MR872544
  31. [31] D. Vogan: Gelfand-Kirillov dimensions for Harish-Chandra modules, Invent. Math.48 (1978) 75-98. Zbl0389.17002MR506503
  32. [32] D. Vogan: Representations of real reductive Lie groups, Birkhäuser, Boston, 1981. Zbl0469.22012MR632407
  33. [33] D. Vogan: Irreducible characters of semisimple Lie groups III: proof of the Kazhdan-Lustig conjectures in the integral case, Inv. Math.71 (1983) 381-417. Zbl0505.22016MR689650
  34. [34] D. Vogan: Irreducible characters of semisimple Lie groups IV: character multiplicity duality, Duke Math. J.49 (1982) 943-1073. Zbl0536.22022MR683010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.