Dual variational principles for an elliptic partial differential equation

Jiří Vacek

Aplikace matematiky (1976)

  • Volume: 21, Issue: 1, page 5-27
  • ISSN: 0862-7940

How to cite

top

Vacek, Jiří. "Dual variational principles for an elliptic partial differential equation." Aplikace matematiky 21.1 (1976): 5-27. <http://eudml.org/doc/14940>.

@article{Vacek1976,
author = {Vacek, Jiří},
journal = {Aplikace matematiky},
language = {eng},
number = {1},
pages = {5-27},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dual variational principles for an elliptic partial differential equation},
url = {http://eudml.org/doc/14940},
volume = {21},
year = {1976},
}

TY - JOUR
AU - Vacek, Jiří
TI - Dual variational principles for an elliptic partial differential equation
JO - Aplikace matematiky
PY - 1976
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 21
IS - 1
SP - 5
EP - 27
LA - eng
UR - http://eudml.org/doc/14940
ER -

References

top
  1. Aubin J. P., Burchard H. G., Some aspects of the method of the hypercircle applied to elliptic variational problems, 1 - 68, Numerical solution of partial differential equations - II, SYNSPADE 1970, ed. B. Hubbard, Academic Press, New York 1971. (1970) Zbl0264.65069MR0285136
  2. Babuška I., Kellog R. D., Numerical solution of the neutron diffusion equation in the presence of corners and interfaces, Numerical reactor calculations, Panel IAEA-SM-154/59, Vienna 1973. (1973) 
  3. Bramble J. H., Zlámal M., Triangular elements in the finite element method, Math, of Соmр., 24, (1970), 809-821. (1970) MR0282540
  4. Grenacher F., A posteriori error estimates for elliptic partial differential equations, Technical Note BN-743, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1972. (1972) 
  5. Kang C. M., Hansen K. F., Finite element method for the neutron diffusion equation, Trans. Am. Nucl. Soc. 14 (1971), 199. (1971) 
  6. Kaper H. G., Leaf G. K., Lindeman A. J., Applications of finite element method in reactor mathematics, ANL-7925, Argonne National Laboratory, Argonne, Illinois, 1972. (1972) Zbl0263.65103
  7. Nečas J., Les méthodes directes en théorie des équations elliptiques, Academia, Praha 1967. (1967) MR0227584
  8. Semenza L. A., Lewis E. E., Rossow E. C., A finite element treatment of neutron diffusion, Trans. Am. Nucl. Soc. 14, (1971), 200. (1971) 
  9. Semenza L. A., Lewis E. E., Rossow E. C., Dual finite element methods for neutron diffusion, Trans. Am. Nucl. Soc., 14 (1971), 662. (1971) 
  10. Strang G., Fix G. J., An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, New Jersey, 1973. (1973) Zbl0356.65096MR0443377
  11. Taylor A. E., Introduction to functional analysis, John Willey & Sons, New York, 1967. (1967) MR0098966
  12. Vacek J., Dual variational principles for neutron diffusion equation, thesis, MFF UK, Praha, 1974 (in Czech). (1974) 
  13. Yasinsky J. B., Kaplan S., On the use of dual variational principles for the estimation of error in approximate solutions of diffusion problems, Nucl. Sci. Eng., 31 (1968), 80. (1968) 
  14. Zlámal M., Ženíšek A., Mathematical aspects of the finite element method, Trans. of ČSAV, 81 (1971), Praha. (1971) Zbl0256.65055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.