Dual variational principles for an elliptic partial differential equation
Aplikace matematiky (1976)
- Volume: 21, Issue: 1, page 5-27
- ISSN: 0862-7940
Access Full Article
topHow to cite
topVacek, Jiří. "Dual variational principles for an elliptic partial differential equation." Aplikace matematiky 21.1 (1976): 5-27. <http://eudml.org/doc/14940>.
@article{Vacek1976,
author = {Vacek, Jiří},
journal = {Aplikace matematiky},
language = {eng},
number = {1},
pages = {5-27},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dual variational principles for an elliptic partial differential equation},
url = {http://eudml.org/doc/14940},
volume = {21},
year = {1976},
}
TY - JOUR
AU - Vacek, Jiří
TI - Dual variational principles for an elliptic partial differential equation
JO - Aplikace matematiky
PY - 1976
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 21
IS - 1
SP - 5
EP - 27
LA - eng
UR - http://eudml.org/doc/14940
ER -
References
top- Aubin J. P., Burchard H. G., Some aspects of the method of the hypercircle applied to elliptic variational problems, 1 - 68, Numerical solution of partial differential equations - II, SYNSPADE 1970, ed. B. Hubbard, Academic Press, New York 1971. (1970) MR0285136
- Babuška I., Kellog R. D., Numerical solution of the neutron diffusion equation in the presence of corners and interfaces, Numerical reactor calculations, Panel IAEA-SM-154/59, Vienna 1973. (1973)
- Bramble J. H., Zlámal M., Triangular elements in the finite element method, Math, of Соmр., 24, (1970), 809-821. (1970) MR0282540
- Grenacher F., A posteriori error estimates for elliptic partial differential equations, Technical Note BN-743, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1972. (1972)
- Kang C. M., Hansen K. F., Finite element method for the neutron diffusion equation, Trans. Am. Nucl. Soc. 14 (1971), 199. (1971)
- Kaper H. G., Leaf G. K., Lindeman A. J., Applications of finite element method in reactor mathematics, ANL-7925, Argonne National Laboratory, Argonne, Illinois, 1972. (1972)
- Nečas J., Les méthodes directes en théorie des équations elliptiques, Academia, Praha 1967. (1967) MR0227584
- Semenza L. A., Lewis E. E., Rossow E. C., A finite element treatment of neutron diffusion, Trans. Am. Nucl. Soc. 14, (1971), 200. (1971)
- Semenza L. A., Lewis E. E., Rossow E. C., Dual finite element methods for neutron diffusion, Trans. Am. Nucl. Soc., 14 (1971), 662. (1971)
- Strang G., Fix G. J., An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, New Jersey, 1973. (1973) Zbl0356.65096MR0443377
- Taylor A. E., Introduction to functional analysis, John Willey & Sons, New York, 1967. (1967) MR0098966
- Vacek J., Dual variational principles for neutron diffusion equation, thesis, MFF UK, Praha, 1974 (in Czech). (1974)
- Yasinsky J. B., Kaplan S., 10.13182/NSE68-A18010, Nucl. Sci. Eng., 31 (1968), 80. (1968) DOI10.13182/NSE68-A18010
- Zlámal M., Ženíšek A., Mathematical aspects of the finite element method, Trans. of ČSAV, 81 (1971), Praha. (1971)
Citations in EuDML Documents
top- Jaroslav Haslinger, A note on a dual finite element method
- Josef Dalík, Operators approximating partial derivatives at vertices of triangulations by averaging
- Jaroslav Haslinger, Ivan Hlaváček, Convergence of a finite element method based on the dual variational formulation
- Juraj Weisz, A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.