Convergence of a finite element method based on the dual variational formulation
Jaroslav Haslinger; Ivan Hlaváček
Aplikace matematiky (1976)
- Volume: 21, Issue: 1, page 43-65
- ISSN: 0862-7940
Access Full Article
topHow to cite
topHaslinger, Jaroslav, and Hlaváček, Ivan. "Convergence of a finite element method based on the dual variational formulation." Aplikace matematiky 21.1 (1976): 43-65. <http://eudml.org/doc/14942>.
@article{Haslinger1976,
author = {Haslinger, Jaroslav, Hlaváček, Ivan},
journal = {Aplikace matematiky},
language = {eng},
number = {1},
pages = {43-65},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of a finite element method based on the dual variational formulation},
url = {http://eudml.org/doc/14942},
volume = {21},
year = {1976},
}
TY - JOUR
AU - Haslinger, Jaroslav
AU - Hlaváček, Ivan
TI - Convergence of a finite element method based on the dual variational formulation
JO - Aplikace matematiky
PY - 1976
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 21
IS - 1
SP - 43
EP - 65
LA - eng
UR - http://eudml.org/doc/14942
ER -
References
top- B. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method, Stress Analysis, ed. by O.C. Zienkiewicz and G. Holister, J. Wiley, 1965, 145-197. (1965)
- B. Fraeijs de Veubeke O. C. Zienkiewicz, 10.1243/03093247V024265, J. Strain Analysis 2, (1967) 265 - 271. (1967) DOI10.1243/03093247V024265
- V. B., Jr. Watwood B. J. Hartz, 10.1016/0020-7683(68)90083-8, Int. J. Solids Structures 4, (1968), 857-873. (1968) DOI10.1016/0020-7683(68)90083-8
- B. Fraeijs de Veubeke M. Hogge, 10.1002/nme.1620050107, Int. J. Numer. Meth. Eng. 5, (1972), 65 - 82. (1972) DOI10.1002/nme.1620050107
- J. P. Aubin H. G. Burchard, Some aspects of the method of the hypercircle applied to elliptic variational problems, Numer. sol. Part. Dif. Eqs. II, SYNSPADE (1970), 1 - 67. (1970) MR0285136
- J. Vacek, Dual variational principles for an elliptic partial differential equation, Apl. mat. 21 (1976), 5-27. (1976) Zbl0345.35035MR0412594
- I. Hlaváček, On a conjugate semi-variational method for parabolic equations, Apl. mat. 18 (1973), 434-444. (1973) MR0404858
- F. Grenacher, A posteriori error estimates for elliptic partial differential equations, Inst. Fluid Dynamics and Appl. Math., Univ. Maryland, TN-BN-T 43, July 1972. (1972)
- W. Prager J. L. Synge, 10.1090/qam/25902, Quart. Appl. Math. 5 (1947), 241 - 269. (1947) MR0025902DOI10.1090/qam/25902
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) MR0227584
- I. Hlaváček, Variational principles in the linear theory of elasticity for general boundary conditions, Apl. mat. 12 (1967), 425-448. (1967) MR0231575
- J. Haslinger J. Hlaváček, Convergence of a dual finite element method in , CMUC 16 (1975), 469-485. (1975) MR0386303
- H. Gajewski, On conjugate evolution equations and a posteriori error estimates, Proceedings of Internal. Summer School on Nonlinear Operators held in Berlin, 1975. (1975)
Citations in EuDML Documents
top- Ivan Hlaváček, The density of solenoidal functions and the convergence of a dual finite element method
- Jaroslav Haslinger, Ivan Hlaváček, Convergence of a dual finite element method in
- Ivan Hlaváček, Dual finite element analysis for unilateral boundary value problems
- Jaroslav Haslinger, Charalambos C. Baniotopoulos, Panagiotis D. Panagiotopoulos, A boundary multivalued integral “equation” approach to the semipermeability problem
- Jaroslav Haslinger, A note on a dual finite element method
- Ivan Hlaváček, Convergence of an equilibrium finite element model for plane elastostatics
- Ivan Hlaváček, Dual finite element analysis for semi-coercive unilateral boundary value problems
- Ivan Hlaváček, Optimization of the domain in elliptic problems by the dual finite element method
- Juraj Weisz, A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem
- Ivan Hlaváček, Michal Křížek, Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.