Dual finite element analysis for unilateral boundary value problems
Aplikace matematiky (1977)
- Volume: 22, Issue: 1, page 14-51
- ISSN: 0862-7940
Access Full Article
topHow to cite
topHlaváček, Ivan. "Dual finite element analysis for unilateral boundary value problems." Aplikace matematiky 22.1 (1977): 14-51. <http://eudml.org/doc/14989>.
@article{Hlaváček1977,
author = {Hlaváček, Ivan},
journal = {Aplikace matematiky},
keywords = {dual approach; bilateral boundary value problems; elliptic equations; Signorini’s type; model problems; asymptotic order of convergence; finite element approximation; numerical solution; a posteriori error estimates; two-sided estimates; dual approach; bilateral boundary value problems; elliptic equations; Signorini's type; model problems; asymptotic order of convergence; finite element approximation; numerical solution; a posteriori error estimates; two-sided estimates},
language = {eng},
number = {1},
pages = {14-51},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dual finite element analysis for unilateral boundary value problems},
url = {http://eudml.org/doc/14989},
volume = {22},
year = {1977},
}
TY - JOUR
AU - Hlaváček, Ivan
TI - Dual finite element analysis for unilateral boundary value problems
JO - Aplikace matematiky
PY - 1977
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 22
IS - 1
SP - 14
EP - 51
LA - eng
KW - dual approach; bilateral boundary value problems; elliptic equations; Signorini’s type; model problems; asymptotic order of convergence; finite element approximation; numerical solution; a posteriori error estimates; two-sided estimates; dual approach; bilateral boundary value problems; elliptic equations; Signorini's type; model problems; asymptotic order of convergence; finite element approximation; numerical solution; a posteriori error estimates; two-sided estimates
UR - http://eudml.org/doc/14989
ER -
References
top- J. P. Aubin H. G. Burchard, Some aspects of the method of the hypercircle applied to elliptic variational problems, Num. sol. PDE-II, SYNSPADE (1970), 1-67. (1970) MR0285136
- I. Hlaváček, Some equilibrium and mixed models in the finite element method, Proceedings of the St. Banach Internat. Math. Center, Warsaw, (1976). (1976)
- J. Haslinger I. Hlaváček, Convergence of a finite element method based on the dual variational formulation, Apl. mat. 21 (1976), 43 - 65. (1976) MR0398126
- G. Fichera, Boundary value problems of elasticity with unilateral constraints, Encyclopedia of Physics, ed. S. Flügge, Vol. VIa/2, Springer, Berlin 1972. (1972)
- J. Céa, Optimisation, théorie et algorithmes, Dunod, Paris 1971. (1971) MR0298892
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) MR0227584
- U. Mosco G. Strang, 10.1090/S0002-9904-1974-13477-4, Bull. Am. Math. Soc. 80 (1974), 308-312. (1974) MR0331818DOI10.1090/S0002-9904-1974-13477-4
- J. H. Bramble M. Zlámal, Triangular elements in the finite element method, Math. Соmр. 24 (1970), 809-820. (1970) MR0282540
- G. Zoutendijk, Methods of feasible directions, Elsevier, Amsterdam 1960. (1960) Zbl0097.35408
- I. Hlaváček, Dual finite element analysis for elliptic problems with obstacles on the boundary, Apl. mat. 22 (to appear).
Citations in EuDML Documents
top- Jaroslav Haslinger, Ján Lovíšek, Mixed variational formulation of unilateral problems
- Ivan Hlaváček, Ján Lovíšek, A finite element analysis for the Signorini problem in plane elastostatics
- Ivan Hlaváček, Dual finite element analysis for elliptic problems with obstacles on the boundary. I
- Jaroslav Haslinger, Finite element analysis for unilateral problems with obstacles on the boundary
- Jiří Nedoma, On a type of Signorini problem without friction in linear thermoelasticity
- Ivan Hlaváček, Dual finite element analysis for semi-coercive unilateral boundary value problems
- Jaroslav Haslinger, Ivan Hlaváček, Contact between elastic bodies. III. Dual finite element analysis
- Jaroslav Haslinger, Dual finite element analysis for an inequality of the 2nd order
- Van Bon Tran, Finite element analysis of primal and dual variational formulations of semicoercive elliptic problems with nonhomogeneous obstacles on the boundary
- Ivan Hlaváček, Convergence of dual finite element approximations for unilateral boundary value problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.