On general boundary value problems and duality in linear elasticity. I

Rolf Hünlich; Joachim Naumann

Aplikace matematiky (1978)

  • Volume: 23, Issue: 3, page 208-230
  • ISSN: 0862-7940

Abstract

top
The equilibrium state of a deformable body under the action of body forces is described by the well known conditions of equilibrium, the straindisplacement relations, the constitutive law of the linear theory and the boundary conditions. The authors discuss in detail the boundary conditions. The starting point is the general relation between the vectors of stress and displacement on the boundary which can be expressed in terms of a subgradient relation. It is shown that this relation includes as special cases all known classical, bilateral and unilateral boundary conditions. Further, the principle of virtual displacements and the principle of minimum of the potential energy are established and it is shown that these principles are equivalent to the original boundary condition problem.

How to cite

top

Hünlich, Rolf, and Naumann, Joachim. "On general boundary value problems and duality in linear elasticity. I." Aplikace matematiky 23.3 (1978): 208-230. <http://eudml.org/doc/15051>.

@article{Hünlich1978,
abstract = {The equilibrium state of a deformable body under the action of body forces is described by the well known conditions of equilibrium, the straindisplacement relations, the constitutive law of the linear theory and the boundary conditions. The authors discuss in detail the boundary conditions. The starting point is the general relation between the vectors of stress and displacement on the boundary which can be expressed in terms of a subgradient relation. It is shown that this relation includes as special cases all known classical, bilateral and unilateral boundary conditions. Further, the principle of virtual displacements and the principle of minimum of the potential energy are established and it is shown that these principles are equivalent to the original boundary condition problem.},
author = {Hünlich, Rolf, Naumann, Joachim},
journal = {Aplikace matematiky},
keywords = {boundary value problems; linear elasticity; law of interaction; principle of virtual displacements; principal of minimum potential energy; Boundary Value Problems; Linear Elasticity; Law of Interaction; Principle of Virtual Displacements; Principal of Minimum Potential Energy},
language = {eng},
number = {3},
pages = {208-230},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On general boundary value problems and duality in linear elasticity. I},
url = {http://eudml.org/doc/15051},
volume = {23},
year = {1978},
}

TY - JOUR
AU - Hünlich, Rolf
AU - Naumann, Joachim
TI - On general boundary value problems and duality in linear elasticity. I
JO - Aplikace matematiky
PY - 1978
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 23
IS - 3
SP - 208
EP - 230
AB - The equilibrium state of a deformable body under the action of body forces is described by the well known conditions of equilibrium, the straindisplacement relations, the constitutive law of the linear theory and the boundary conditions. The authors discuss in detail the boundary conditions. The starting point is the general relation between the vectors of stress and displacement on the boundary which can be expressed in terms of a subgradient relation. It is shown that this relation includes as special cases all known classical, bilateral and unilateral boundary conditions. Further, the principle of virtual displacements and the principle of minimum of the potential energy are established and it is shown that these principles are equivalent to the original boundary condition problem.
LA - eng
KW - boundary value problems; linear elasticity; law of interaction; principle of virtual displacements; principal of minimum potential energy; Boundary Value Problems; Linear Elasticity; Law of Interaction; Principle of Virtual Displacements; Principal of Minimum Potential Energy
UR - http://eudml.org/doc/15051
ER -

References

top
  1. A. Brondsted, R. T. Rockafellar, 10.1090/S0002-9939-1965-0178103-8, Proc. Amer. Math. Soc., 16 (1965), 605-611. (1965) MR0178103DOI10.1090/S0002-9939-1965-0178103-8
  2. G. Duvaut J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris 1972. (1972) MR0464857
  3. G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, Memorie (Cl. Sci. fis., mat. e nat.), serie 8, vol. 7 (1964), 91-140. (1964) Zbl0146.21204MR0178631
  4. G. Fichera, Boundary value problems of elasticity with unilateral constraints, In: Handbuch der Physik (Herausg.: S. Flügge), Band VI a/2, Springer, 1972. (1972) 
  5. H. Gajewski K. Gröger, K. Zacharias, Nichtlineare Operatorgleichurgen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin 1974. (1974) MR0636412
  6. I. Hlaváček, Variational principles in the linear theory of elasticity for general boundary conditions, Apl. Mat., 12 (1967), 425 - 447. (1967) MR0231575
  7. I. Hlaváček, J. Nečas, On inequalities of Korn's type. I: Boundary value problems for elliptic systems of partial differential equations. II: Applications to linear elasticity, Arch. Rat. Mech. Anal.. 36 (1970), 305-311, 312-334. (1970) 
  8. A. D. loffe, V. M. Tikhomirov, The theory of extremum problems, (Russian). Moscow, 1974. (1974) 
  9. F. Lené, Sur les matériaux élastiques à énergie de déformation non quadratique, J. Méc., 13 (1974), 499-534. (1974) MR0375890
  10. J. J. Moreau, Fonctionelles convexes, College de France, 1966- 1967. (1966) MR0390443
  11. J. J. Moreau, On unilateral constraints, friction and plasticity, In: New variational techniques in mathematical physics. C. I. M. E., Ed. Cremonese, Roma 1974, 173-322. (1974) MR0513445
  12. J. J. Moreau, La convexité en statique, In: Analyse convexe et ses applications (ed. by J. P. Aubin), Lecture Notes Econ. and Math. Systems, No. 102 (1974), 141 - 167. (1974) Zbl0302.70001
  13. J. J. Moreau, La notion de sur-potentiel et les liasions unilaterales en élastostatique, 12th Intern. Congr. Appl. Mech. 
  14. B. Nayroles, Quelques applications variationnelles de la théorie des functions duales à la mécanique de solides, J. Méc., 10 (1971), 263-289. (1971) MR0280053
  15. B. Nayroles, Duality and convexity in solid equilibrium problems, Laboratoire Méc. et d'Acoustique, C. N. R. S., Marseille 1974. (1974) 
  16. B. Nayroles, Point de vue algebrique. Convexité et integrandes convexes en mécanique des solides, In: New variational techniques in mathematical physics. C. T. M. E., Ed. Cremonese, Roma 1974, 325-404. (1974) 
  17. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) MR0227584
  18. R. T. Rockafellar, 10.1215/S0012-7094-66-03312-6, Duke Math. J., 33 (1966), 81-90. (1966) Zbl0138.09301MR0187062DOI10.1215/S0012-7094-66-03312-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.