On the approximate solution of the multi-group time-dependent transport equation by P L -method

Stanislav Míka

Aplikace matematiky (1979)

  • Volume: 24, Issue: 2, page 133-154
  • ISSN: 0862-7940

Abstract

top
This paper concerns l -velocity model of the general linear time-dependent transport equation. The assumed probability of the collision (scattering, fission) depends only on the angle of the directions of the moving neutron before and after the collision. The weak formulation of the problem is given and a priori estimates are obtained. The construction of an approximate problem by bad hbox-method is given. In the symmetric hyperbolic system obtained by bad hbox-method dissipativity and 𝒜 -orthogonality of the relevant boundary spaces are proved and the connection with the mono-velocity model of the transport equation studied in papers by U.M. Sultangazin and S.K. Godunov is shown. The work is concluded by the proof of the weak convergence of the bad hbox-method.

How to cite

top

Míka, Stanislav. "On the approximate solution of the multi-group time-dependent transport equation by $P_L$-method." Aplikace matematiky 24.2 (1979): 133-154. <http://eudml.org/doc/15088>.

@article{Míka1979,
abstract = {This paper concerns $l$-velocity model of the general linear time-dependent transport equation. The assumed probability of the collision (scattering, fission) depends only on the angle of the directions of the moving neutron before and after the collision. The weak formulation of the problem is given and a priori estimates are obtained. The construction of an approximate problem by $\text\{P_L\}$-method is given. In the symmetric hyperbolic system obtained by $\text\{P_L\}$-method dissipativity and $\mathcal \{A\}$-orthogonality of the relevant boundary spaces are proved and the connection with the mono-velocity model of the transport equation studied in papers by U.M. Sultangazin and S.K. Godunov is shown. The work is concluded by the proof of the weak convergence of the $\text\{P_L\}$-method.},
author = {Míka, Stanislav},
journal = {Aplikace matematiky},
keywords = {spherical-harmonics method; neutron transport equation; approximation of solution; spherical-harmonics method; neutron transport equation; approximation of solution},
language = {eng},
number = {2},
pages = {133-154},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the approximate solution of the multi-group time-dependent transport equation by $P_L$-method},
url = {http://eudml.org/doc/15088},
volume = {24},
year = {1979},
}

TY - JOUR
AU - Míka, Stanislav
TI - On the approximate solution of the multi-group time-dependent transport equation by $P_L$-method
JO - Aplikace matematiky
PY - 1979
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 24
IS - 2
SP - 133
EP - 154
AB - This paper concerns $l$-velocity model of the general linear time-dependent transport equation. The assumed probability of the collision (scattering, fission) depends only on the angle of the directions of the moving neutron before and after the collision. The weak formulation of the problem is given and a priori estimates are obtained. The construction of an approximate problem by $\text{P_L}$-method is given. In the symmetric hyperbolic system obtained by $\text{P_L}$-method dissipativity and $\mathcal {A}$-orthogonality of the relevant boundary spaces are proved and the connection with the mono-velocity model of the transport equation studied in papers by U.M. Sultangazin and S.K. Godunov is shown. The work is concluded by the proof of the weak convergence of the $\text{P_L}$-method.
LA - eng
KW - spherical-harmonics method; neutron transport equation; approximation of solution; spherical-harmonics method; neutron transport equation; approximation of solution
UR - http://eudml.org/doc/15088
ER -

References

top
  1. Г. И. Марчук В. И. Лебедев, Численные методы в теории переноса нейтронов, Атомзидат, Москва 1972. (1972) Zbl1225.01023
  2. В. I. Bell S. Glasstone, Nuclear Reactor Theory, 1970. (Russian translation - Moscow Atomizdat 1974). (1974) 
  3. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Praha 1967. (1967) MR0227584
  4. В. С. Владимиров, Математические задачи односкоростной теории переноса нейтронов, Труды математического института им. В. И. Стеклова AHCCCP, № 59 (1961), 3-154. (1961) Zbl1160.68305
  5. У. M. Султангазип, Дифференциальные свойства решений смешаной задачи Коши для нестационарного кинетического уравнения, ВЦ СО АН СССР (препринт), Новосибирск 1971. (1971) Zbl1168.35423
  6. И. Марек, Некоторые математические задачи теопри ядерных реакторов на быстрых нейтронах, Aplikace matematiky 8, с. 6 (1963), 442-467. (1963) Zbl1145.93303
  7. С. К. Годунов, У M. Султангазин, О диссипативности граничных условий Владимирова для симметрической системы метода сферических гармоник, ЖВМ и МФ 11, № 3 (1971), 688-704. (1971) Zbl1230.35094MR0298229
  8. У. M. Султангазин, К вопросу о сходимости метода сферических гармоник для нестационарного уравнения переноса, ЖВМ и МФ 14, № 1 (1974), 166-178. (1974) Zbl1168.37322MR0342108
  9. С. Мика У. M. Султангазин, Сходимость метода сферических гармоник для многогруппового кинетического уравнения, Численные методы механики сплошной среды> СО АН СССР, том 6, № 4 (1975), 69-85. (1975) Zbl1231.90252MR0676650
  10. S. Mika, Approximation of the solution of the multi-group neutron transport equation in the slab geometry, Proceedings of "Software and algorithms of the numerical mathematics", JČMF 1975, 150-159, (in Czech). (1975) 
  11. K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418. (1958) Zbl0083.31802MR0100718
  12. K. O. Friedrichs P. D. Lax, Boundary Value Problems for First Order Operators, Comm. Pure Appl. Math. 18 (1965), 355-388. (1965) MR0174999
  13. C. V. Pao, On Nonlinear Time-Dependent Multivelocity Transport Equations, Journal of Math. Anal. and Appl. 44 (1973), 725-744. (1973) Zbl0267.45020MR0337238
  14. P. Lesaint, 10.1007/BF01436628, Numerische Mathematik 21 (1973), 244-255. (1973) MR0341902DOI10.1007/BF01436628
  15. А. Ш. Акишев У. M. Султангазин, О сильной сходимости метода сферических гармоник для кинетического уравнения переноса в случае сферической симметрии, Сборник ,,Математика и механика 8, Алма-Ата 1974, 12-18. (1974) Zbl1235.49003
  16. S. Mika, Approximation of the solution of the multi-group time-dependent neutron transport equation by P L -method, KMA VŠSE Plzeň 1976 (Dissertation - in Czech). (1976) 
  17. A. Douglis, The Solutions of Multidimensional Generalized Transport Equation and Their Calculation by Difference Methods, Numerical Solution of Partial Differential Equations ed. by Bramble. Academic Press, New York 1965, 197-256. (1965) MR0205026
  18. D. G. Wilson, 10.1016/0022-247X(74)90047-X, Journal of Math. Anal. and Appl. 47 (1974), 182-209. (1974) Zbl0307.45011MR0343821DOI10.1016/0022-247X(74)90047-X
  19. S. Ukai, 10.1080/18811248.1972.9734860, Journal of Nuclear Science and Technology 9 (1972), 366-373. (1972) MR0311268DOI10.1080/18811248.1972.9734860

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.