Contact between elastic bodies. I. Continuous problems
Jaroslav Haslinger; Ivan Hlaváček
Aplikace matematiky (1980)
- Volume: 25, Issue: 5, page 324-347
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHaslinger, Jaroslav, and Hlaváček, Ivan. "Contact between elastic bodies. I. Continuous problems." Aplikace matematiky 25.5 (1980): 324-347. <http://eudml.org/doc/15157>.
@article{Haslinger1980,
abstract = {Problems of a unilateral contact between bounded bodies without friction are considered within the range of two-dimensional linear elastostatics. Two classes of problems are distinguished: those with a bounded contact zone and with an enlargign contact zone. Both classes can be formulated in terms of displacements by means of a variational inequality. The proofs of existence of a solution are presented and the uniqueness discussed.},
author = {Haslinger, Jaroslav, Hlaváček, Ivan},
journal = {Aplikace matematiky},
keywords = {zero friction; small deformations; basic relations; minimum principles for potential energy; conditions which guarantee existence and uniqueness of weak solutions; one-dimensional spaces of rigid virtual displacements; zero friction; small deformations; basic relations; minimum principles for potential energy; conditions which guarantee existence and uniqueness of weak solutions; one-dimensional spaces of rigid virtual displacements},
language = {eng},
number = {5},
pages = {324-347},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Contact between elastic bodies. I. Continuous problems},
url = {http://eudml.org/doc/15157},
volume = {25},
year = {1980},
}
TY - JOUR
AU - Haslinger, Jaroslav
AU - Hlaváček, Ivan
TI - Contact between elastic bodies. I. Continuous problems
JO - Aplikace matematiky
PY - 1980
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 25
IS - 5
SP - 324
EP - 347
AB - Problems of a unilateral contact between bounded bodies without friction are considered within the range of two-dimensional linear elastostatics. Two classes of problems are distinguished: those with a bounded contact zone and with an enlargign contact zone. Both classes can be formulated in terms of displacements by means of a variational inequality. The proofs of existence of a solution are presented and the uniqueness discussed.
LA - eng
KW - zero friction; small deformations; basic relations; minimum principles for potential energy; conditions which guarantee existence and uniqueness of weak solutions; one-dimensional spaces of rigid virtual displacements; zero friction; small deformations; basic relations; minimum principles for potential energy; conditions which guarantee existence and uniqueness of weak solutions; one-dimensional spaces of rigid virtual displacements
UR - http://eudml.org/doc/15157
ER -
References
top- H. Hertz, Miscellaneous Papers, Mc Millan, London 1896.
- S. H. Chan, I. S. Tuba, 10.1016/0020-7403(71)90032-4, Intern. J. Mech. Sci, 13, (1971), 615-639. (1971) Zbl0226.73052DOI10.1016/0020-7403(71)90032-4
- T. F. Conry, A. Seireg, 10.1115/1.3408787, J.A.M. ASME, 2 (1971), 387-392. (1971) DOI10.1115/1.3408787
- A. Francavilla, O. C. Zienkiewicz, 10.1002/nme.1620090410, Intern. J. Numer. Meth. Eng. 9 (1975), 913 - 924. (1975) DOI10.1002/nme.1620090410
- B. Fredriksson, 10.1016/0045-7949(76)90003-1, Соmр. & Struct. 6 (1976), 281 - 290. (1976) Zbl0349.73036DOI10.1016/0045-7949(76)90003-1
- P. D. Panagiotopoulos, 10.1007/BF00534623, Ing. Archiv 44 (1975), 421 to 432. (1975) Zbl0332.73018MR0426584DOI10.1007/BF00534623
- G. Duvaut, Problèmes de contact entre corps solides deformables, Appl. Meth. Fund. Anal. to Problems in Mechanics, (317 - 327), ed. by P. Germain and B. Nayroles, Lecture Notes in Math., Springer-Verlag 1976. (1976) Zbl0359.73017MR0669228
- G. Duvaut, J. L. Lions, Les inéquations en mécanique et en physique, Paris, Dunod 1972. (1972) Zbl0298.73001MR0464857
- A. Signorini, Questioni di elasticità non linearizzata o serni-linearizzata, Rend. di Matem. e delle sue appl. 18 (1959). (1959) MR0118021
- G. Fichera, Boundary value problems of elasticity with unilateral constraints, Encycl. of Physics (ed. by S. Flugge), vol. VIa/2, Springer-Verlag, Berlin 1972. (1972)
- I. Hlaváček, J. Nečas, 10.1007/BF00249518, Arch. Ratl. Mech. Anal., 36 (1970), 305-334. (1970) Zbl0193.39002MR0252844DOI10.1007/BF00249518
- J. Nečas, On regularity of solutions to nonlinear variational inequalities for second-order elliptic systems, Rend. di Matematica 2, (1975), vol. 8, Ser. Vl, 481 - 498. (1975) MR0382827
- J. Nečas, I. Hlaváček, Matematická teorie pružných a pružně plastických těles, SNTL Praha (to appear). English translation: Mathematical theory of elastic and elastoplastic bodies. Elsevier, Amsterdam 1980. (1980) MR0600655
Citations in EuDML Documents
top- Jaroslav Haslinger, Miroslav Tvrdý, Approximation and numerical solution of contact problems with friction
- Jindřich Nečas, Ivan Hlaváček, Solution of Signorini's contact problem in the deformation theory of plasticity by secant modules method
- Jaroslav Haslinger, Ivan Hlaváček, Contact between elastic perfectly plastic bodies
- S. Drabla, M. Sofonea, B. Teniou, Analysis of a frictionless contact problem for elastic bodies
- Jaroslav Haslinger, Ivan Hlaváček, Contact between elastic bodies. II. Finite element analysis
- Van Bon Tran, Dual finite element analysis for contact problem of elastic bodies with an enlarging contact zone
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.