# Contact between elastic bodies. II. Finite element analysis

Jaroslav Haslinger; Ivan Hlaváček

Aplikace matematiky (1981)

- Volume: 26, Issue: 4, page 263-290
- ISSN: 0862-7940

## Access Full Article

top## Abstract

top## How to cite

topHaslinger, Jaroslav, and Hlaváček, Ivan. "Contact between elastic bodies. II. Finite element analysis." Aplikace matematiky 26.4 (1981): 263-290. <http://eudml.org/doc/15200>.

@article{Haslinger1981,

abstract = {The paper deals with the approximation of contact problems of two elastic bodies by finite element method. Using piecewise linear finite elements, some error estimates are derived, assuming that the exact solution is sufficiently smooth. If the solution is not regular, the convergence itself is proven. This analysis is given for two types of contact problems: with a bounded contact zone and with enlarging contact zone.},

author = {Haslinger, Jaroslav, Hlaváček, Ivan},

journal = {Aplikace matematiky},

keywords = {piecewise linear elements; error estimate; exact solution sufficiently smooth; solution not regular; convergence; piecewise linear elements; error estimate; exact solution sufficiently smooth; solution not regular; convergence},

language = {eng},

number = {4},

pages = {263-290},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Contact between elastic bodies. II. Finite element analysis},

url = {http://eudml.org/doc/15200},

volume = {26},

year = {1981},

}

TY - JOUR

AU - Haslinger, Jaroslav

AU - Hlaváček, Ivan

TI - Contact between elastic bodies. II. Finite element analysis

JO - Aplikace matematiky

PY - 1981

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 26

IS - 4

SP - 263

EP - 290

AB - The paper deals with the approximation of contact problems of two elastic bodies by finite element method. Using piecewise linear finite elements, some error estimates are derived, assuming that the exact solution is sufficiently smooth. If the solution is not regular, the convergence itself is proven. This analysis is given for two types of contact problems: with a bounded contact zone and with enlarging contact zone.

LA - eng

KW - piecewise linear elements; error estimate; exact solution sufficiently smooth; solution not regular; convergence; piecewise linear elements; error estimate; exact solution sufficiently smooth; solution not regular; convergence

UR - http://eudml.org/doc/15200

ER -

## References

top- J. Haslinger I. Hlaváček, Contact between elastic bodies. Part I. Continuous problems, Apl. Mat. 25 (1980), 324-348. (1980) MR0590487
- J. Céa, Optimisation, théorie et algorithmes, Dunod, Paris 1971. (1971) MR0298892
- M. Zlámal, 10.1137/0710022, SIAM J. Numer. Anal. 10, (1973), 229-240. (1973) MR0395263DOI10.1137/0710022
- G. Strang G. Fix, An analysis of the finite element method, Prentice-Hall, 1973. (1973) MR0443377
- J. Nitsche, 10.1007/BF02995904, Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15. (1971) MR0341903DOI10.1007/BF02995904
- I. Hlaváček J. Lovíšek, Finite element analysis of the Signorini problem in semi-coercive cases, Apl. Mat. 25 (1980), 274-285. (1980) MR0583588
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
- J. Haslinger, Finite element analysis for unilateral problems with obstacles on the boundary, Apl. Mat. 22(1977), 180-187. (1977) Zbl0434.65083MR0440956
- F. Brezzi W. W. Hager P. A. Raviart, 10.1007/BF01404345, Numer. Math. 28 (1977), 431 - 443. (1977) MR0448949DOI10.1007/BF01404345

## Citations in EuDML Documents

top- Igor Bock, Ján Lovíšek, An analysis of a contact problem for a cylindrical shell: A primary and dual formulation
- Jaroslav Haslinger, Ivan Hlaváček, Contact between elastic perfectly plastic bodies
- Z. Belhachmi, J.-M. Sac-Epée, S. Tahir, Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity
- Jaroslav Haslinger, Ivan Hlaváček, Contact between elastic bodies. III. Dual finite element analysis
- Van Bon Tran, Dual finite element analysis for contact problem of elastic bodies with an enlarging contact zone

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.