On superadditive rates of convergence

Florian A. Potra

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1985)

  • Volume: 19, Issue: 4, page 671-685
  • ISSN: 0764-583X

How to cite

top

Potra, Florian A.. "On superadditive rates of convergence." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.4 (1985): 671-685. <http://eudml.org/doc/193464>.

@article{Potra1985,
author = {Potra, Florian A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {method of nondiscrete induction; iteration; Newton's method; superadditive function; rate of convergence},
language = {eng},
number = {4},
pages = {671-685},
publisher = {Dunod},
title = {On superadditive rates of convergence},
url = {http://eudml.org/doc/193464},
volume = {19},
year = {1985},
}

TY - JOUR
AU - Potra, Florian A.
TI - On superadditive rates of convergence
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 4
SP - 671
EP - 685
LA - eng
KW - method of nondiscrete induction; iteration; Newton's method; superadditive function; rate of convergence
UR - http://eudml.org/doc/193464
ER -

References

top
  1. [1] I. KOREC, On a problem of V. Ptak, Cas. pro pest. mat. 103 (1978), 365-379. Zbl0429.26001MR512233
  2. [2] J. KRIŽKOVÁ, P. VRBOVÁ, A remark on a factorization theorem, Comm. Math. Univ. Carol (CMUC) 15 (1974), 611-614. Zbl0329.46055MR361789
  3. [3] J. M. ORTEGA, W. C. RHEINBOLDT, Itérative solution of nonlinear équations in serval variables, Academic Press, London, 1970. Zbl0241.65046MR273810
  4. [4] H. PETZELTOVÁ, P. VRBOVÁ, An overrelaxed modification of Newton's method, Revue Roumaine des Mathématiques 22 (1977), 959-963. Zbl0379.65029MR478203
  5. [5] H. PETZELTOVÁ, P., A remark on small divisors problems, Czech. Math. J. 103 (1978), 1-12. Zbl0419.47029MR482803
  6. [6] F. A. POTRA, On a modified secant method, Math. Rev. Anal. Numer. Theor. Approximation, Anal. Numer. Theor. Approximation, 8,2 (1979), 203-214. Zbl0445.65055MR573981
  7. [7] F. A. POTRA, An application of the induction method of V. Pták to the study of Régula Falsi, Aplikace Matematiky 26 (1981), 111-120. Zbl0486.65038MR612668
  8. [8] F. A. POTRA, The rate of convergence of a modified Newton's process, Aplikace matematiky 26 (1981), 13-17. Zbl0486.65039MR602398
  9. [9] F. A. POTRA, An error analysis for the secant method, Numer. Math. 38 (1982), 427-445. Zbl0465.65033MR654108
  10. [10] F. A. POTRA, V. PTÁK, Nondiscrete induction and a double step sécant method, Math. Scand. 46 (1980), 236-250. Zbl0423.65034MR591604
  11. [11] F. A. POTRA, V. PTÁK, On a class of modified Newton processes, Numer. Funct. Anal, and Optimiz. 2 (1980), 107-120. Zbl0472.65049MR580387
  12. [12] F. A. POTRA, V. PTÁK, Sharp error bounds for Newton's process, Numer. Math. 34 (1980), 63-72. Zbl0434.65034MR560794
  13. [13] F. A. POTRA, V. PTÁK : A generalization of Régula Falsi, Numer. Math. 36 (1981), 333-346. Zbl0478.65039MR613073
  14. [14] F. A. POTRA, V. PTÁK : Nondiscrete induction and an inversion free modification of Newtons method, Cas. pro pest. mat. 108, 4 (1983), 333-341. Zbl0563.65040MR727533
  15. [15] F. A. POTRA, V. PTÁK : Nondiscrete induction and itérative processes, Pitman Advanced Publishing Program, London, 1984. Zbl0549.41001MR754338
  16. [16] V. PTÁK : Some metric aspects of the open mapping theorem, Math. Ann. 165 (1966), 95-104. Zbl0138.37602MR192316
  17. [17] V. PTÁK : A quantitative refinement of the closed graph theorem, Czech. Math. J. 99 (1974), 503-506. Zbl0315.46007MR348431
  18. [18] V. PTÁK : A theorem of the closed graph type, Manuscripta Math. 13 (1974), 109-130. Zbl0286.46008MR348430
  19. [19] V. PTÁK : Deux théorèmes de factorisation, Comptes Rendus, Acad. Sci. Paris 278 (1974), 1091-1094. Zbl0277.46047MR341096
  20. [20] V. PTÁK : Concerning the rate of convergence of Newton'sprocess, Comm. Math. Univ. Carolinae 16 (1975), 599-705. Zbl0314.65023MR398092
  21. [21] V. PTÁK, A modification of Newtons method, Cas. pest mat. 101 (1976), 188-194. MR443326
  22. [22] V. PTÁK, Nondiscrete mathematical induction and itérative existence proofs, Linear Algebra and its Applications 13 (1976), 223-236. Zbl0323.46005MR394119
  23. [23] V. PTÁK, The rate of convergence of Newton's process, Numer. Math. 25 (1976), 279-285. Zbl0304.65037MR478587
  24. [24] V. PTÁK, Nondiscrete mathematical induction, in : General Topology and its Relations to Modem Analysis and Algebra IV, 166-178, Lecture Notes in Mathematics 609, Springer Verlag, 1977. Zbl0367.46007MR487618
  25. [25] V., What should be a rate of convergence, R.A.I.R.O., Analyse Numérique 11 (1977), 279-286. Zbl0378.65031MR474799
  26. [26] V. PTÁK, Stability of exactness, Comm. Math. (Poznan) 21 (1978), 343-348. 
  27. [27] V., A rate of convergence, Numer. Funct. Anal, and Optimiz. 1 (1979), 255-271. Zbl0441.46010MR537831
  28. [28] V. PTÁK, Factorization in Banach algebras, Studia Math. 65 (1979), 279-285. Zbl0342.46036MR567080
  29. [29] J. W. SCHMIDT, H. LEONHARDT, Eeingrenzung von Lösungen mit Hüfe der Régula falsi, Computing 6 (1970). 318-329. Zbl0231.65053MR286275
  30. [30] J. ZEMÁNEK, A remark on transitivity of operator algebras, CAS. PEST. MAT. 100 (1975), 176-178. Zbl0302.46044MR380436

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.