On determination of eigenvalues and eigenvectors of selfadjoint operators
Aplikace matematiky (1981)
- Volume: 26, Issue: 3, page 161-170
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKolomý, Josef. "On determination of eigenvalues and eigenvectors of selfadjoint operators." Aplikace matematiky 26.3 (1981): 161-170. <http://eudml.org/doc/15192>.
@article{Kolomý1981,
abstract = {Two simple methods for approximate determination of eigenvalues and eigenvectors of linear self-adjoint operators are considered in the following two cases: (i) lower-upper bound $\lambda _1$ of the spectrum $\sigma (A)$ of $A$ is an isolated point of $\sigma (A)$; (ii) $\lambda _1$ (not necessarily an isolated point of $\sigma (A)$ with finite multiplicity) is an eigenvalue of $A$.},
author = {Kolomý, Josef},
journal = {Aplikace matematiky},
keywords = {eigenvalues; eigenvectors; self-adjoint operators; spectrum; eigenvalues; eigenvectors; self-adjoint operators; spectrum},
language = {eng},
number = {3},
pages = {161-170},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On determination of eigenvalues and eigenvectors of selfadjoint operators},
url = {http://eudml.org/doc/15192},
volume = {26},
year = {1981},
}
TY - JOUR
AU - Kolomý, Josef
TI - On determination of eigenvalues and eigenvectors of selfadjoint operators
JO - Aplikace matematiky
PY - 1981
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 26
IS - 3
SP - 161
EP - 170
AB - Two simple methods for approximate determination of eigenvalues and eigenvectors of linear self-adjoint operators are considered in the following two cases: (i) lower-upper bound $\lambda _1$ of the spectrum $\sigma (A)$ of $A$ is an isolated point of $\sigma (A)$; (ii) $\lambda _1$ (not necessarily an isolated point of $\sigma (A)$ with finite multiplicity) is an eigenvalue of $A$.
LA - eng
KW - eigenvalues; eigenvectors; self-adjoint operators; spectrum; eigenvalues; eigenvectors; self-adjoint operators; spectrum
UR - http://eudml.org/doc/15192
ER -
References
top- R. I. Andrushkiw, 10.1016/0022-247X(75)90007-4, J. Math. Anal. Appl. 50 (1975), 511 -527. (1975) MR0390817DOI10.1016/0022-247X(75)90007-4
- И. А. Биргер, Некоторые математические методы решения инженерных задач, Изд. Оборонгиз (Москва, 1956). (1956) Zbl0995.90522
- H. Bückner, An iterative method for solving nonlinear integral equations, Symp. on the numerical treatment of ordinary differential equations, integral and integro-differential equations, 613 - 643, Roma 1960, Birkhäuser Verlag, Basel- Stuttgart, 1960. (1960) MR0129571
- J. Kolomý, On convergence of the iteration methods, Comment. Math. Univ. Carolinae 1 (1960), 18-24. (1960)
- J. Kolomý, On the solution of homogeneous functional equations in Hilbert space, Comment. Math. Univ. Carolinae 3 (1962), 36-47. (1962) MR0149306
- J. Kolomý, 10.4064/ap-38-2-153-158, Ann. Math. Pol. 38 (1980), 153 - 158. (1980) MR0599239DOI10.4064/ap-38-2-153-158
- J. Kolomý, Some methods for finding of eigenvalues and eigenvectors of linear and nonlinear operators, Abhandlungen der DAW, Abt. Math. Naturwiss. Tech., 1978, 6, 159-166, Akademie-Verlag, Berlin, 1978. (1978) MR0540456
- M. А. Красносельский, другие, Приближенное решение операторных уравнений, Наука (Москва, 1969). (1969) Zbl1149.62317
- I. Marek, Iterations of linear bounded operators in non self-adjoint eigenvalue problems and Kellogg's iteration process, Czech. Math. Journal 12 (1962), 536-554. (1962) Zbl0192.23701MR0149297
- I. Marek, Kellogg's iteration with minimizing parameters, Comment. Math. Univ. Carolinae 4 (1963), 53-64. (1963) MR0172459
- Г. И. Марчук, Методы вычислительной математили, Изд. Наука (Новосибирск, 1973). (1973) Zbl1170.01397
- W. V. Petryshyn, On the eigenvalue problem with unbounded and symmetric operators T and S, Phil. Trans. of the Royal Soc. of London, Ser. A. Math. and Phys. Sciences No 1130, Vol. 262 (1968), 413-458. (1968) MR0222697
- А. И. Плеснер, Спектральная теория линейных операторов, Изд. Наука (Москва, 1965). (1965) Zbl1099.01519
- Wang Jin-Ru (Wang Chin-Ju), Gradient methods for finding eigenvalues and eigenvectors, Chinese Math. - Acta 5 (1964), 578-587. (1964) MR0173358
- A. E. Taylor, Introduction in Functional Analysis, J. Wiley and Sons, Inc., New York, 1967. (1967)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.