An approximate method for determination of eigenvalues and eigenvectors of self-adjoint operators

Josef Kolomý

Časopis pro pěstování matematiky (1981)

  • Volume: 106, Issue: 3, page 243-255
  • ISSN: 0528-2195

How to cite

top

Kolomý, Josef. "An approximate method for determination of eigenvalues and eigenvectors of self-adjoint operators." Časopis pro pěstování matematiky 106.3 (1981): 243-255. <http://eudml.org/doc/21464>.

@article{Kolomý1981,
author = {Kolomý, Josef},
journal = {Časopis pro pěstování matematiky},
keywords = {approximate method; eigenvalues; eigenvectors; self-adjoint operators},
language = {eng},
number = {3},
pages = {243-255},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {An approximate method for determination of eigenvalues and eigenvectors of self-adjoint operators},
url = {http://eudml.org/doc/21464},
volume = {106},
year = {1981},
}

TY - JOUR
AU - Kolomý, Josef
TI - An approximate method for determination of eigenvalues and eigenvectors of self-adjoint operators
JO - Časopis pro pěstování matematiky
PY - 1981
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 106
IS - 3
SP - 243
EP - 255
LA - eng
KW - approximate method; eigenvalues; eigenvectors; self-adjoint operators
UR - http://eudml.org/doc/21464
ER -

References

top
  1. J. Kolomý, Approximate determination of eigenvalues and eigenvectors of self-adjoint operators, Ann, Pol, Math. 38 (1980), 153-158. (1980) Zbl0455.47015MR0599239
  2. J. Kolomý, On determination of eigenvalues and eigenvectors of self-adjoint operators, Apl. mat. 26 (1981), 161-170. (1981) Zbl0469.65033MR0615603
  3. J. Kolomý, Determination of eigenvalues and eigenvectors of self-adjoint operators, Mathematica 22 (1980), 53-58. (1980) Zbl0455.47015MR0618027
  4. М. А. Красносельский, другие, Приближенное ршение операторных уравнений, Изд. Наука, Москва, 1969. (1969) Zbl1149.62317
  5. I. Marek, Iterations of linear bounded operators in nonself-adjoint eigenvalue problems and Kellog's iteration process, Czech. Math. J. 12 (1962), 536-554. (1962) MR0149297
  6. W. V. Petryshyn, On the eigenvalue problem T ( u ) - λ S ( u ) = 0 with unbounded and symmetric operators T and S , Phil. Trans. Royal Soc. London Ser. A, Math. Phys. Sci., No 1130, Vol. 262 (1968), 413-458. (1968) MR0222697
  7. V. Pták J. Zemánek, Continuity Lipschitzienne du spectre comme function d'un operateur normal, Comment. Math. Univ. Carolinae 17 (1976), 507-512. (1976) Zbl0341.47019MR0493433
  8. В. П. Пугачев, О двух приемах приближенного вычисления собственных значений и сообственных векторов, Докл. акад. СССР, 110 (1956), 334-337. (1956) Zbl0995.90522MR0084182
  9. Б. П. Пугачев, Исследование одного метода приближенного вычисления собственных чисел и сообственных векторов, Труды сем. по функц. анал. Воронеж, T. 4 (1960), 81-97. (1960) Zbl1004.90500
  10. F. Riesz B. Sz.-Nagy, Lesons d'analyse fonctionnelle, Ac. Sci. de Hongrif, Budapest, 1953. (1953) Zbl0051.08403
  11. Wang Jin-ru, A gradient method for finding the eigenvalues and eigenvectors of a self-adjoint operator, Acta Math. Sinica 13 (1963), 23-28 (Chinese Math. Acta 4 (1963), 24-30). (1963) MR0163431
  12. K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.