An approximate method for determination of eigenvalues and eigenvectors of self-adjoint operators

Josef Kolomý

Časopis pro pěstování matematiky (1981)

  • Volume: 106, Issue: 3, page 243-255
  • ISSN: 0528-2195

How to cite

top

Kolomý, Josef. "An approximate method for determination of eigenvalues and eigenvectors of self-adjoint operators." Časopis pro pěstování matematiky 106.3 (1981): 243-255. <http://eudml.org/doc/21464>.

@article{Kolomý1981,
author = {Kolomý, Josef},
journal = {Časopis pro pěstování matematiky},
keywords = {approximate method; eigenvalues; eigenvectors; self-adjoint operators},
language = {eng},
number = {3},
pages = {243-255},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {An approximate method for determination of eigenvalues and eigenvectors of self-adjoint operators},
url = {http://eudml.org/doc/21464},
volume = {106},
year = {1981},
}

TY - JOUR
AU - Kolomý, Josef
TI - An approximate method for determination of eigenvalues and eigenvectors of self-adjoint operators
JO - Časopis pro pěstování matematiky
PY - 1981
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 106
IS - 3
SP - 243
EP - 255
LA - eng
KW - approximate method; eigenvalues; eigenvectors; self-adjoint operators
UR - http://eudml.org/doc/21464
ER -

References

top
  1. J. Kolomý, Approximate determination of eigenvalues and eigenvectors of self-adjoint operators, Ann, Pol, Math. 38 (1980), 153-158. (1980) MR0599239
  2. J. Kolomý, On determination of eigenvalues and eigenvectors of self-adjoint operators, Apl. mat. 26 (1981), 161-170. (1981) MR0615603
  3. J. Kolomý, Determination of eigenvalues and eigenvectors of self-adjoint operators, Mathematica 22 (1980), 53-58. (1980) MR0618027
  4. М. А. Красносельский, другие, Приближенное ршение операторных уравнений, Изд. Наука, Москва, 1969. (1969) Zbl1149.62317
  5. I. Marek, Iterations of linear bounded operators in nonself-adjoint eigenvalue problems and Kellog's iteration process, Czech. Math. J. 12 (1962), 536-554. (1962) MR0149297
  6. W. V. Petryshyn, On the eigenvalue problem with unbounded and symmetric operators and , Phil. Trans. Royal Soc. London Ser. A, Math. Phys. Sci., No 1130, Vol. 262 (1968), 413-458. (1968) MR0222697
  7. V. Pták J. Zemánek, Continuity Lipschitzienne du spectre comme function d'un operateur normal, Comment. Math. Univ. Carolinae 17 (1976), 507-512. (1976) MR0493433
  8. В. П. Пугачев, О двух приемах приближенного вычисления собственных значений и сообственных векторов, Докл. акад. СССР, 110 (1956), 334-337. (1956) Zbl0995.90522MR0084182
  9. Б. П. Пугачев, Исследование одного метода приближенного вычисления собственных чисел и сообственных векторов, Труды сем. по функц. анал. Воронеж, T. 4 (1960), 81-97. (1960) Zbl1004.90500
  10. F. Riesz B. Sz.-Nagy, Lesons d'analyse fonctionnelle, Ac. Sci. de Hongrif, Budapest, 1953. (1953) 
  11. Wang Jin-ru, A gradient method for finding the eigenvalues and eigenvectors of a self-adjoint operator, Acta Math. Sinica 13 (1963), 23-28 (Chinese Math. Acta 4 (1963), 24-30). (1963) MR0163431
  12. K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504

NotesEmbed ?

top

You must be logged in to post comments.