# Once more about the monotonicity of the Temple quotients

Drahoslava Janovská; Ivo Marek

Aplikace matematiky (1984)

- Volume: 29, Issue: 6, page 459-468
- ISSN: 0862-7940

## Access Full Article

top## Abstract

top## How to cite

topJanovská, Drahoslava, and Marek, Ivo. "Once more about the monotonicity of the Temple quotients." Aplikace matematiky 29.6 (1984): 459-468. <http://eudml.org/doc/15377>.

@article{Janovská1984,

abstract = {A new proof of the monotonicity of the Temple quotients for the computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space is given. Another goal of the paper is a precise analysis of the length of the interval for admissible shifts for the Temple quotients.},

author = {Janovská, Drahoslava, Marek, Ivo},

journal = {Aplikace matematiky},

keywords = {monotonicity of the Temple quotients; computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space; length of the interval for admissible shifts for the Temple quotients; monotonicity of the Temple quotients; computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space; length of the interval for admissible shifts for the Temple quotients},

language = {eng},

number = {6},

pages = {459-468},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Once more about the monotonicity of the Temple quotients},

url = {http://eudml.org/doc/15377},

volume = {29},

year = {1984},

}

TY - JOUR

AU - Janovská, Drahoslava

AU - Marek, Ivo

TI - Once more about the monotonicity of the Temple quotients

JO - Aplikace matematiky

PY - 1984

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 29

IS - 6

SP - 459

EP - 468

AB - A new proof of the monotonicity of the Temple quotients for the computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space is given. Another goal of the paper is a precise analysis of the length of the interval for admissible shifts for the Temple quotients.

LA - eng

KW - monotonicity of the Temple quotients; computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space; length of the interval for admissible shifts for the Temple quotients; monotonicity of the Temple quotients; computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space; length of the interval for admissible shifts for the Temple quotients

UR - http://eudml.org/doc/15377

ER -

## References

top- F. Goerisch J. Albrecht, Die Monotonie der Templeschen Quotienten, ZAMM 64, T278 -T279 (1984). (1984) MR0754507
- K. Rektorys, A proof of monotony of the Temple quotients on eigenvalue problems, Apl. mat. 29 (1984), 149-158. (1984) MR0738500
- F. Riesz B. Nagy Szekefalvi, Leçons d'analyse fonctionelle, Academie des sciences de Hongarie, Budapest 1953 (Russian). Izdat. Inost. Lit., Moscow 1964. (1953)
- A. E. Taylor, Introduction to Functional Analysis, J. Wiley, New York 1958. (1958) Zbl0081.10202MR0098966

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.