Once more about the monotonicity of the Temple quotients
Drahoslava Janovská; Ivo Marek
Aplikace matematiky (1984)
- Volume: 29, Issue: 6, page 459-468
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topJanovská, Drahoslava, and Marek, Ivo. "Once more about the monotonicity of the Temple quotients." Aplikace matematiky 29.6 (1984): 459-468. <http://eudml.org/doc/15377>.
@article{Janovská1984,
abstract = {A new proof of the monotonicity of the Temple quotients for the computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space is given. Another goal of the paper is a precise analysis of the length of the interval for admissible shifts for the Temple quotients.},
author = {Janovská, Drahoslava, Marek, Ivo},
journal = {Aplikace matematiky},
keywords = {monotonicity of the Temple quotients; computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space; length of the interval for admissible shifts for the Temple quotients; monotonicity of the Temple quotients; computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space; length of the interval for admissible shifts for the Temple quotients},
language = {eng},
number = {6},
pages = {459-468},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Once more about the monotonicity of the Temple quotients},
url = {http://eudml.org/doc/15377},
volume = {29},
year = {1984},
}
TY - JOUR
AU - Janovská, Drahoslava
AU - Marek, Ivo
TI - Once more about the monotonicity of the Temple quotients
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 6
SP - 459
EP - 468
AB - A new proof of the monotonicity of the Temple quotients for the computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space is given. Another goal of the paper is a precise analysis of the length of the interval for admissible shifts for the Temple quotients.
LA - eng
KW - monotonicity of the Temple quotients; computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space; length of the interval for admissible shifts for the Temple quotients; monotonicity of the Temple quotients; computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space; length of the interval for admissible shifts for the Temple quotients
UR - http://eudml.org/doc/15377
ER -
References
top- F. Goerisch J. Albrecht, Die Monotonie der Templeschen Quotienten, ZAMM 64, T278 -T279 (1984). (1984) MR0754507
- K. Rektorys, A proof of monotony of the Temple quotients on eigenvalue problems, Apl. mat. 29 (1984), 149-158. (1984) MR0738500
- F. Riesz B. Nagy Szekefalvi, Leçons d'analyse fonctionelle, Academie des sciences de Hongarie, Budapest 1953 (Russian). Izdat. Inost. Lit., Moscow 1964. (1953)
- A. E. Taylor, Introduction to Functional Analysis, J. Wiley, New York 1958. (1958) Zbl0081.10202MR0098966
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.