Solvability of a first order system in three-dimensional non-smooth domains
Michal Křížek; Pekka Neittaanmäki
Aplikace matematiky (1985)
- Volume: 30, Issue: 4, page 307-315
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKřížek, Michal, and Neittaanmäki, Pekka. "Solvability of a first order system in three-dimensional non-smooth domains." Aplikace matematiky 30.4 (1985): 307-315. <http://eudml.org/doc/15409>.
@article{Křížek1985,
abstract = {A system of first order partial differential equations is studied which is defined by the divergence and rotation operators in a bounded nonsmooth domain $\Omega \subset \mathbf \{R\}^3$. On the boundary $\delta \Omega $, the vanishing normal component is prescribed. A variational formulation is given and its solvability is investigated.},
author = {Křížek, Michal, Neittaanmäki, Pekka},
journal = {Aplikace matematiky},
keywords = {Friedrich’s inequality; boundary value problem; magnetostatics in vacuum; bounded domain with Lipschitz boundary; Trace theorems; Friedrich's inequality; boundary value problem; magnetostatics in vacuum; bounded domain with Lipschitz boundary; Trace theorems},
language = {eng},
number = {4},
pages = {307-315},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solvability of a first order system in three-dimensional non-smooth domains},
url = {http://eudml.org/doc/15409},
volume = {30},
year = {1985},
}
TY - JOUR
AU - Křížek, Michal
AU - Neittaanmäki, Pekka
TI - Solvability of a first order system in three-dimensional non-smooth domains
JO - Aplikace matematiky
PY - 1985
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 30
IS - 4
SP - 307
EP - 315
AB - A system of first order partial differential equations is studied which is defined by the divergence and rotation operators in a bounded nonsmooth domain $\Omega \subset \mathbf {R}^3$. On the boundary $\delta \Omega $, the vanishing normal component is prescribed. A variational formulation is given and its solvability is investigated.
LA - eng
KW - Friedrich’s inequality; boundary value problem; magnetostatics in vacuum; bounded domain with Lipschitz boundary; Trace theorems; Friedrich's inequality; boundary value problem; magnetostatics in vacuum; bounded domain with Lipschitz boundary; Trace theorems
UR - http://eudml.org/doc/15409
ER -
References
top- C. Bernardi, Formulation variationnelle mixte des equations de Navier-Stokes en dimension 3, Thýese de 3ème cycle (deuxième partie), Paris VI (1979), 146-176. (1979)
- B. M. Budak S. V. Fomin, Multiple integrals, field theory and series, Mir Publishers, 1975. (1975) MR0349913
- E. B. Byhovskiy, Solution of a mixed problem for the system of Maxwell equations in case of ideally conductive boundary, Vestnik Leningrad. Univ. Mat. Meh. Astronom. 12 (1957), 50-66. (1957) MR0098567
- M. Crouzeix, Résolution numérique des équations de Stokes stationnaires. Approximation et méthodes iteratives de resolution d'inequations variationnelles et de problèms non lineaires, IRIA, 1974, 139-211. (1974)
- M. Crouzeix A. Y. Le Roux, Ecoulement d'une fluide irrotationnel, Journées Eléments Finis, Univ. de Rennes, 1976, 1 - 8. (1976)
- G. Duvaut J. L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, 1976. (1976) MR0521262
- A. Friedman, Advanced calculus, Reinhart and Winston, Holt, New York, 1971. (1971) Zbl0225.26002MR0352342
- K. O. Friedrichs, 10.1002/cpa.3160080408, Comm. Pure Appl. Math. 8 (1955), 551-590. (1955) Zbl0066.07504MR0087763DOI10.1002/cpa.3160080408
- V. Girault P. A. Raviart, Finite element approximation of the Navier-Stokes equation, Springer-Verlag, Berlin, Heidelberg, New York, 1979. (1979) MR0548867
- M. Křížek P. Neittaanmäki, 10.7146/math.scand.a-12037, Math. Scand. 54 (1984), 17-26. (1984) MR0753060DOI10.7146/math.scand.a-12037
- M. Křížek P. Neittaanmäki, Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains, Apl. Mat. 29 (1984), 272 - 285. (1984) MR0754079
- E. Moise, Geometrical topology in dimension 2 and 3, Springer-Verlag, Berlin, Heidelberg, New York, 1977. (1977)
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
- J. Nečas I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: an introduction, Elsevier, Amsterdam, Oxford, New York, 1981. (1981) MR0600655
- P. Neittaanmäki M. Křížek, Conforming FE-method for obtaining the gradient of a solution to the Poisson equation. Efficient Solvers for Elliptic Systems, (Ed. W. Hackbush), Numerical Methods in Fluid Mechanics, Vieweg, 1984, 73-86. (1984) MR0804088
- P. Neittaanmäki J. Saranen, 10.1080/01630568008816072, Numer. Funct. Anal. Optim. 2 (1981), 487-506. (1981) MR0605756DOI10.1080/01630568008816072
- Neittaanmaki J. Saranen, 10.1016/0771-050X(82)90038-9, J. Comput. Appl. Math. 8 (1982), 165-169. (1982) DOI10.1016/0771-050X(82)90038-9
- R. Picard, 10.1002/mma.1670030116, Math. Methods Appl. Sci. 3 (1981), 218-228. (1981) Zbl0466.31016MR0657293DOI10.1002/mma.1670030116
- R. Picard, On the boundary value problems of electro- and magnetostatics, SFB 72, preprint 442 (1981), Bonn. (1981) MR0667134
- R. Picard, An elementary proof for a compact imbedding result in the generalized electromagnetic theory, SFB 72, preprint 624 (1984), Bonn. (1984) MR0753428
- J. Saranen, 10.1016/0022-247X(82)90179-2, J. Math. Anal. Appl. 88 (1982), 104-115. (1982) Zbl0508.35024MR0661405DOI10.1016/0022-247X(82)90179-2
- J. Saranen, 10.1016/0022-247X(83)90104-X, J. Math. Anal. Appl. 91 (1983), 254-275. (1983) MR0688544DOI10.1016/0022-247X(83)90104-X
- R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam 1977. (1977) Zbl0383.35057MR0609732
- Ch. Weber, 10.1002/mma.1670020103, Math. Methods Appl. Sci. 2 (1980), 12-25. (1980) Zbl0432.35032MR0561375DOI10.1002/mma.1670020103
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.