The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type

Yan Ping Lin; Tie Zhu Zhang

Applications of Mathematics (1991)

  • Volume: 36, Issue: 2, page 123-133
  • ISSN: 0862-7940

Abstract

top
In this paper we first study the stability of Ritz-Volterra projection (see below) and its maximum norm estimates, and then we use these results to derive some L error estimates for finite element methods for parabolic integro-differential equations.

How to cite

top

Lin, Yan Ping, and Zhang, Tie Zhu. "The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type." Applications of Mathematics 36.2 (1991): 123-133. <http://eudml.org/doc/15664>.

@article{Lin1991,
abstract = {In this paper we first study the stability of Ritz-Volterra projection (see below) and its maximum norm estimates, and then we use these results to derive some $L^\infty $ error estimates for finite element methods for parabolic integro-differential equations.},
author = {Lin, Yan Ping, Zhang, Tie Zhu},
journal = {Applications of Mathematics},
keywords = {Ritz-Volterra projection; stability; finite element; error estimates; initial- boundary-value problem; parabolic Volterra integro-differential equation; stability; finite element methods; Ritz-Volterra projection; initial- boundary-value problem; parabolic Volterra integro-differential equation; error estimates},
language = {eng},
number = {2},
pages = {123-133},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type},
url = {http://eudml.org/doc/15664},
volume = {36},
year = {1991},
}

TY - JOUR
AU - Lin, Yan Ping
AU - Zhang, Tie Zhu
TI - The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type
JO - Applications of Mathematics
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 2
SP - 123
EP - 133
AB - In this paper we first study the stability of Ritz-Volterra projection (see below) and its maximum norm estimates, and then we use these results to derive some $L^\infty $ error estimates for finite element methods for parabolic integro-differential equations.
LA - eng
KW - Ritz-Volterra projection; stability; finite element; error estimates; initial- boundary-value problem; parabolic Volterra integro-differential equation; stability; finite element methods; Ritz-Volterra projection; initial- boundary-value problem; parabolic Volterra integro-differential equation; error estimates
UR - http://eudml.org/doc/15664
ER -

References

top
  1. J. R. Cannon, Yanping Lin, 10.1007/BF02575943, Calcolo, 25 (1988) 187- 201, (1988) MR1053754DOI10.1007/BF02575943
  2. J. R. Cannon Y. Lin, 10.1137/0727036, SJAM. J. Numer. Anal., 27 (1990) 595-607. (1990) MR1041253DOI10.1137/0727036
  3. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, 1978. (1978) Zbl0383.65058MR0520174
  4. E. Green-Yanik G. Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations, to appear in Nonlinear Analysis. MR0954953
  5. M. N. Le Roux V. Thomee, 10.1137/0726075, SIAM J. Numer. Anal., 26 (1989) 1291-1309. (1989) MR1025089DOI10.1137/0726075
  6. Y. Lin V. Thomee L. Wahlbin, A Ritz-Volterra projection onto finite element spaces and application to integro and related equations, to appear in SIAM J. Numer. Anal. MR1111453
  7. Qun Lin, Tao Lu, Shu-min Shen, Maximum norm estimate, extrapolation and optimal points of stresses for the finite element methods on the strongly regular triangulalion, J. Соmр. Math., Vol. 1, No. 4 (1983) 376-383. (1983) MR0726394
  8. Qun Lin, Qi-ding Zhou, Superconvergence Theory of Finite Element Methods, Book to appear. 
  9. J. A. Nitsche, L -convergence of finite element Galerkin approximations for parabolic problems, R.A.I.R.O., Vol. 13, No. 1, (1979) 31-51. (1979) Zbl0401.65069MR0527037
  10. R. Rannacher R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Соmр. 38 (1982) 437-445. (1982) MR0645661
  11. A. H. Schatz V. Thomée L. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pur. Appl. Math., XXXIII, (1980) 265-304. (1980) MR0562737
  12. R. Scott, Optimal L estimates for the finite element on irregular meshes, Math. Соmр., 30 (1976) 681-697. (1976) Zbl0349.65060MR0436617
  13. V. Thomee N. Y. Zhang, Error estimates for semi-discrete finite element methods for parabolic integro-differential equations, Math. Соmр., 53 (1989) 121-139. (1989) MR0969493
  14. M. F. Wheeler, 10.1137/0710062, SIAM J. Numer. Anal. 19 (1973) 723-759. (1973) MR0351124DOI10.1137/0710062

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.