L -convergence of finite element Galerkin approximations for parabolic problems

Joachim A. Nitsche

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1979)

  • Volume: 13, Issue: 1, page 31-54
  • ISSN: 0764-583X

How to cite

top

Nitsche, Joachim A.. "$L_\infty $-convergence of finite element Galerkin approximations for parabolic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 13.1 (1979): 31-54. <http://eudml.org/doc/193332>.

@article{Nitsche1979,
author = {Nitsche, Joachim A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Error Estimates; Galerkin Method; Second Order Parabolic Initial-Boundary Value Problems},
language = {eng},
number = {1},
pages = {31-54},
publisher = {Dunod},
title = {$L_\infty $-convergence of finite element Galerkin approximations for parabolic problems},
url = {http://eudml.org/doc/193332},
volume = {13},
year = {1979},
}

TY - JOUR
AU - Nitsche, Joachim A.
TI - $L_\infty $-convergence of finite element Galerkin approximations for parabolic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1979
PB - Dunod
VL - 13
IS - 1
SP - 31
EP - 54
LA - eng
KW - Error Estimates; Galerkin Method; Second Order Parabolic Initial-Boundary Value Problems
UR - http://eudml.org/doc/193332
ER -

References

top
  1. Part a: literature cited 
  2. 1. D. ARCHER, An O(h4) cubic spline collocation method for quasilinear parabolic equations, S.I.A.M, J. Numer. Anal., 14, 1977, p. 620-637. Zbl0366.65054MR461934
  3. 2. J. H. BRAMBLE and R. SCOTT, Simultaneous approximation in scales of Banach spaces (to appear). Zbl0404.41005MR501990
  4. 3. J. H. BRAMBLE, A. SCHATZ, V. THOMEE and L. B. WAHLBIN, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, S.I.A.M., J. Numer. Anal, 14, 1977, p. 218-241. Zbl0364.65084MR448926
  5. 4. J. C. CAVENDISH and C. A. HALL, L∞-convergence of collocation and Galerkin approximations to linear two-point parabolic problems, Aequationes Math , 11, 1974, p. 230-249. Zbl0301.65064MR362951
  6. 5. P. G. CIARLET and P.-A. RAVIART , Interpolation theory over curved elements with applications to finite element methods, Comp. Meth. Appl. Mech. Eng., l, 1972, p. 217-249. Zbl0261.65079MR375801
  7. 6. J. Jr. DOUGLAS and T. DUPONT, A finite element collocation method for quasilinear parabolic equations, Math. Comp, 27, 1973, p. 17-18. Zbl0256.65050MR339508
  8. 7. J. Jr. DOUGLAS, T. DUPONT and M. WHEELER, Some superconvergence results for an H1-Galerkin procedure for the heat equation, Lecture Notes in Comp. Sci, 10, 1974,p. 491-504. Zbl0285.65068MR451774
  9. 8. F. NATTERER, Uber punktweise Konvergenz finiter Elemente, Num. Math., 25, 1975, p. 67-77. Zbl0331.65073MR474884
  10. 9. J. NITSCHE, Zur Konvergenz von Naherungsverfahren bezüglich verschiedener Normen, Num. Math., 15, 1970, p. 224-228. Zbl0221.65092MR279509
  11. 10. J. NITSCHE, L∞-convergence of finite element approximation. 2nd Conference on Finite Elements, Rennes, 1975. Zbl0362.65088
  12. 11. J. NITSCHE, Über L∞-Abschatzungen von Projektionen auf finite Elemente, Bonner Mathematische Schriften, 89, 1976, p. 13-30. Zbl0358.65094MR451780
  13. 12. J. NITSCHE, L∞-convergence of finite element approximations, Lecture Notes in Math., 606, 1977, p. 261-274. Zbl0362.65088MR488848
  14. 13. J. NITSCHE and A. SCHATZ, On local approximation properdes of L2-projection on spline-subspaces, Appl Anal., 2, 1972, p. 161-168. Zbl0239.41007MR397268
  15. 14. R. SCOTT, Optimal L∞ estimates for the finite element method on irregular meshes, Math. Comp., 30, 1976, p. 681-697. Zbl0349.65060MR436617
  16. 15. V. THOMÉE, Spline-Galerkin methods for initial-value problems with constant coefficients, Lecture Notes in Math., 363, 1974, p. 164-175. Zbl0298.65061MR426450
  17. 16. L. WAHLBIN, On maximum norm error estimates for Galerkin approximation to one-dimensional second order parabolic boundary value problems, S.I.A.M., J. Numer. Anal., 12, 1975, p. 177-182. Zbl0295.65053MR383785
  18. 17. M. B. WHEELER, L∞ estimates of optimal orders for Galerkin methods of one dimensional second order parabolic and hyperbolic equations, S.I.A.M., J. Numer. Anal., 10, 1973, p. 908-913. Zbl0266.65074MR343658
  19. 18. M. ZLAMAL, Curved elements in the finite element method, S.I.A.M., J. Numer. Anal., 10, 1973, p. 229-240 and 11, 1974, p. 347-362. Zbl0285.65067
  20. Part b: additionat literature 
  21. 19. R. S. ANDERSSEN, The numerical solution of parabolic differential equations using variational methods, Numer. Math., 13 1969, p. 129-145. Zbl0183.44701MR255082
  22. 20. R. S. NDERSSEN, A class of densely invertible parabolic operator equations, Bull. Austral Math. Soc, 1, 1969, p. 363-374. Zbl0177.14203MR259366
  23. 21. G. A. BAKER, J. BRAMBLE and V. THOMÉE, Single step Galerkin approximations or parabolic problems, Math. Comp., 31, 1977, p. 818-847. Zbl0378.65061MR448947
  24. 22. W. E. BOSARGE Jr., O. G. JOHNSON and C. L. SMITH, A direct method approximation to the linear parabolic regulator problem over multivaraite spline bases, S.I.A.M., J. Numer. Anal, 10, 1973, p. 35-49. Zbl0257.49011MR317146
  25. 23. J. H. BRAMBLE and V. THOMÉE, Semidiscrete-least squares methods for a parabolic boundary value problem, Math. Comp., 26, 1972,p. 633-648. Zbl0268.65060MR349038
  26. 24. J. DESCLOUX, On the numerical integration of the heat equation, Numer. Math.,15, 1970, p. 371-381. Zbl0211.19202MR269140
  27. 25. J. DOUGLAS Jr., A survey of methods for parabolic differential equations, Advances in Computers, 2, 1961, p. 1-54. Zbl0133.38503MR142211
  28. 26. J. DOUGLAS Jr. and T. DUPONT, The numerical solution of waterflooding problems in petroleum engineering by variational methods, Studies in Numer. Anal., 2, 1968, p. 53-63. Zbl0245.65048MR269141
  29. 27. J. DOUGLAS Jr. and T. DUPONT, Galerkin methods for parabolic equations, S.I.A.M., J. Numer. Anal., 7, 1970, p. 575-626. Zbl0224.35048MR277126
  30. 28. J. DOUGLAS Jr. and T. DUPONT, A finite element collocation method for the heat equation, Symposia Mathematica, 10, 1972, p, 403-410. Zbl0274.65034MR373329
  31. 29. J. DOUGLAS Jr. and T. D UPONT, A finite element collocation method for nonlinear parabolic equations, Math. Comp., 27, 1973, p. 17-28. Zbl0256.65050MR339508
  32. 30. J. DOUGLAS Jr. and T. DUPONT, Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer. Math., 20, 1973, p. 213-237. Zbl0234.65096MR319379
  33. 31. J. DOUGLAS Jr. and T. DUPONT, Collocation methods for parabolic equations in a single space variable (based on C1-piecewise-polynomial spaces), Lecture Notes in Math., 385, 1974. Zbl0279.65097MR483559
  34. 32. J. DOUGLAS Jr., T. DUPONT and P. PERCELL, A time-stepping method for Galerkin approximations for nonlinear parabolic equations (to appear). Zbl0381.65058MR483542
  35. 33. T. DUPONT, L2 error estimates for projection methods for parabolic equations in approximating domains, Mathematical aspects of finite elements in partial differential equations, ed. de Boor, Academic Press, New York, 1974, p. 313-352 Zbl0382.65050MR349031
  36. 34. B. A. FINLAYSON, Convergence of the Galerkin method for nonlinear problems involving chemical reaction, S.I.A.M., J. Numer. Anal., 8, 1971, p. 316-324. Zbl0221.65173MR285142
  37. 35. G. FIX and N. NASSIF, On finite element approximation to time dependent problems, Numer. Math., 19, 1972, p. 127-135. Zbl0244.65063MR311122
  38. 36. H. GAJEWSKI and K. ZACHARIAS, Zur starken Konvergenz des Galerkinverfahrens bei einer Klasse pseudo-parabolischer partieller Differentialgleichungen, Math. Nachr., 47, 1970, p. 365-376. Zbl0217.53102MR287144
  39. 37. G. GEYMONAT and M. SIBONY, Approximation de certaines équations paraboliques non linéaires, Calcolo, 13, 1976, p. 213-256. Zbl0336.35058MR455473
  40. 38. H.-P. HELFRICH, Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen, Manuscripta math., 13, 1974, p. 219-235. Zbl0323.65037MR356513
  41. 39. H.-P. HELFRICH, Lokale Konvergenz des Galerkinverfahrens bei Gleichungen vom parabolischen Typ in Hilberträumen (to appear). 
  42. 40. I. HLAVACEK, Variational principles for parabolic equations, Api. Mat., 14, 1969, p. 278-297. Zbl0182.13803MR255988
  43. 41. I. HLAVACEK, On a semi-variational method for parabolic equations II, Apl. Math., 18, 1973, p. 43-64. Zbl0253.65065MR323124
  44. 42. D. C. JOYCE, Survey of extrapolation processes in numerical analysis, S.I.A.M., Rev., 13, 1971, p. 435-490. Zbl0229.65005MR307435
  45. 43. J. T. KING, The approximate solution of parabolic initial boundary value problems by weighted least-squares methods, S.I.A.M., J. Numer. Anal., 9, 1972, p. 215-229. Zbl0245.65051MR305626
  46. 44. H. D. MEYER, The numerical solution of nonlinear parabolic problems by variational Methods, S.I.A.M., J. Numer. Anal., 10, 1973, p. 700-722. Zbl0262.65066MR339518
  47. 45. P.A. RAVIART, Approximation des équations d'évolution par des méthodes variationnelles, Numer. Anal, of part. diff. equations, éd. J. L. Lions, C.I.M.E., 1968, p. 359-406. MR245227
  48. 46. P. A. RAVIART, The use of numerical integration in finite element methods for solving parabolic equations, Topics in Numer. Anal., éd.J. J. Miller, Academic Press, 1973, p. 233-264. Zbl0293.65086MR345428
  49. 47. R. E. SHOWALTER, A priori error estimates for approximation of parabolic boundary value problems, S.I.A.M., J. Numer. Anal., 12, 1975, p. 456-463. Zbl0323.35044MR391534
  50. 48. P. E. SOBOLEVSK II, The Bubnov-Galerkin method for parabolic equations in Hilbert space, S.M.D., 9, 1968, p. 154-157. Zbl0203.40402MR223705
  51. 49. V. THOMÉE, Convergence estimates for semi-discrete Galerkin methods for initial value problems, Lecture Notes in Math., 333, 1973, p. 243-262. Zbl0267.65069MR458948
  52. 50. V. THOMÉE, Some convergence results for Galerkin methods for parabolic boundary value problems, Math. Aspects of Finite Elements in Partial Diff. Equ., ed. C de Boor, Academic Press, New York, 1974, p. 55-88. Zbl0343.65046MR657811
  53. 51. V. THOMÉE and L. WAHLBIN, On Galerkin methods in semilinear parabolic problems, S.I.A.M., J. Numer. Anal., 12, 1975, p. 378-389. Zbl0307.35007MR395269
  54. 52. B. WENDROFF, Spline-Galerkin methods for initial value problems with variable coefficients, Lecture Notes in Math., 363, 1974, p. 189-195. Zbl0298.65062MR431718
  55. 53. M. B. WHEELER, An H - 1 Galerkin method for parabolic problems in a single space variable, S.I.A.M., J. Numer, Anal., 12, 1975, p. 803-817. Zbl0331.65075MR413556
  56. 54. M. ZLAMAL, Finite element methods for nonlinear parabolic equations, R.A.I.R.O. Anal. Num., 11, 1977, p. 93-107. Zbl0385.65049MR502073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.