A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems

Josef Dalík

Applications of Mathematics (1991)

  • Volume: 36, Issue: 5, page 329-354
  • ISSN: 0862-7940

Abstract

top
A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation - ϵ u n + p u ' + q u = f are presented and analyzed theoretically. The positive number ϵ is supposed to be much less than the discretization step and the values of p , q . An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.

How to cite

top

Dalík, Josef. "A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems." Applications of Mathematics 36.5 (1991): 329-354. <http://eudml.org/doc/15683>.

@article{Dalík1991,
abstract = {A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation $-\epsilon u^n + pu^\{\prime \} + qu=f$ are presented and analyzed theoretically. The positive number $\epsilon $ is supposed to be much less than the discretization step and the values of $\left|p\right|,q$. An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.},
author = {Dalík, Josef},
journal = {Applications of Mathematics},
keywords = {convection-diffusion problem with dominated convection; Petrov-Galerkin method; reaction-diffusion equation; test functions; Petrov-Galerkin method; Dirichlet problem; algorithm; numerical examples; convection-diffusion equation; reaction-diffusion equation; test functions; Petrov-Galerkin method; Dirichlet problem; algorithm; numerical examples},
language = {eng},
number = {5},
pages = {329-354},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems},
url = {http://eudml.org/doc/15683},
volume = {36},
year = {1991},
}

TY - JOUR
AU - Dalík, Josef
TI - A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems
JO - Applications of Mathematics
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 5
SP - 329
EP - 354
AB - A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation $-\epsilon u^n + pu^{\prime } + qu=f$ are presented and analyzed theoretically. The positive number $\epsilon $ is supposed to be much less than the discretization step and the values of $\left|p\right|,q$. An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.
LA - eng
KW - convection-diffusion problem with dominated convection; Petrov-Galerkin method; reaction-diffusion equation; test functions; Petrov-Galerkin method; Dirichlet problem; algorithm; numerical examples; convection-diffusion equation; reaction-diffusion equation; test functions; Petrov-Galerkin method; Dirichlet problem; algorithm; numerical examples
UR - http://eudml.org/doc/15683
ER -

References

top
  1. J. E. Akin, Application and implementation of finite element methods, Academic Press, London, New York, 1982. (1982) Zbl0535.73063MR0693291
  2. J. W. Barret K. W. Morton, The mathematics of finite elements and applications IV, Academic Press, London, New York (1982), 403-411. (1982) 
  3. P. Bar-Yoseph M. Israeli, 10.1007/BF01389540, Numer. Math. Vol. 49, 4 (1986), 425-438. (1986) MR0853664DOI10.1007/BF01389540
  4. J. H. Bramble B. E. Hubbard, New monotone type approximations for elliptic problems, Math. Соmр. 18 (1964), 349-367. (1964) MR0165702
  5. A. N. Brooks T. J. R. Hughes, 10.1016/0045-7825(82)90071-8, Computer Math. in Appl. Mech. and Eng. 32 (1982), 199-259. (1982) MR0679322DOI10.1016/0045-7825(82)90071-8
  6. P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
  7. J. Dalík, An apriori error estimate of an approximation of a two-point boundary value problem by the Petrov-Galerkin method, (Czech). Knižnice obd. a věd. spisů VUT Brno, Sv. A-35 (1988), 19-28. (1988) MR0960239
  8. E. P. Doolan J. J. H. Miller W. H. A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980. (1980) MR0610605
  9. R. Ghwinski, Numerical nethods for nonlinear variational problems. Appendix II, Springer- -Verlag, New York, Berlin, 1984. (1984) MR0737005
  10. P. W. Hemker P. M. De Zeeuw, Defect correction for the solution of a singular perturbation problem, (preprint). Math. centrum, 1982. (1982) MR0685785
  11. P. W. Hemker, Numerical aspects of singular perturbation problems, (preprint). Math. centrum, Amsterdam, 1982. (1982) MR0708292
  12. T. lkeda, Maximum principle in finite element models for convection-diffusion phenomena, North-Holland, Amsterdam, New York, Oxford, 1983. (1983) 
  13. C. Johnson U. Nävert, Analysis of some finite element methods for advection-diffusion problems, (research report). Chalmers Univ. of Techn., Goteborg, 1980. (1980) MR0605502
  14. C. Johnson U. Nävert J. Pitkäranta, Finite elements method for linear hyperbolic problems, (research report). Chalmers Univ. of Techn., Göteborg, 1982. (1982) 
  15. U. Nävert, A finite element method for convection-diffusion problems, (thesis). Chalmers Univ. of Techn., Göteborg, 1982. (1982) 
  16. U. Nävert, The streamline diffusion method for timedependent convection-diffusion problems with small diffusion, (research report). Chalmers Univ. of Techn., Göteborg, 1981. (1981) 
  17. E. O'Riordan, 10.1007/BF01405573, Numer. Math. Vol. 44, 3 (1984), 425-434. (1984) Zbl0569.65065MR0757497DOI10.1007/BF01405573
  18. G. D. Raithby, 10.1016/0045-7825(76)90058-X, Comp. Meth. Appl. Mech. Eng. Vol 9 (1976), 153-164. (1976) Zbl0347.76066MR0443576DOI10.1016/0045-7825(76)90058-X
  19. P. A. Raviart, Les méthodes d'élements finis en mécanique des fluides II, 3. Edditions Eyrolles, Paris, 1981. (1981) MR0631851

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.