A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems
Applications of Mathematics (1991)
- Volume: 36, Issue: 5, page 329-354
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDalík, Josef. "A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems." Applications of Mathematics 36.5 (1991): 329-354. <http://eudml.org/doc/15683>.
@article{Dalík1991,
abstract = {A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation $-\epsilon u^n + pu^\{\prime \} + qu=f$ are presented and analyzed theoretically. The positive number $\epsilon $ is supposed to be much less than the discretization step and the values of $\left|p\right|,q$. An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.},
author = {Dalík, Josef},
journal = {Applications of Mathematics},
keywords = {convection-diffusion problem with dominated convection; Petrov-Galerkin method; reaction-diffusion equation; test functions; Petrov-Galerkin method; Dirichlet problem; algorithm; numerical examples; convection-diffusion equation; reaction-diffusion equation; test functions; Petrov-Galerkin method; Dirichlet problem; algorithm; numerical examples},
language = {eng},
number = {5},
pages = {329-354},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems},
url = {http://eudml.org/doc/15683},
volume = {36},
year = {1991},
}
TY - JOUR
AU - Dalík, Josef
TI - A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems
JO - Applications of Mathematics
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 5
SP - 329
EP - 354
AB - A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation $-\epsilon u^n + pu^{\prime } + qu=f$ are presented and analyzed theoretically. The positive number $\epsilon $ is supposed to be much less than the discretization step and the values of $\left|p\right|,q$. An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.
LA - eng
KW - convection-diffusion problem with dominated convection; Petrov-Galerkin method; reaction-diffusion equation; test functions; Petrov-Galerkin method; Dirichlet problem; algorithm; numerical examples; convection-diffusion equation; reaction-diffusion equation; test functions; Petrov-Galerkin method; Dirichlet problem; algorithm; numerical examples
UR - http://eudml.org/doc/15683
ER -
References
top- J. E. Akin, Application and implementation of finite element methods, Academic Press, London, New York, 1982. (1982) Zbl0535.73063MR0693291
- J. W. Barret K. W. Morton, The mathematics of finite elements and applications IV, Academic Press, London, New York (1982), 403-411. (1982)
- P. Bar-Yoseph M. Israeli, 10.1007/BF01389540, Numer. Math. Vol. 49, 4 (1986), 425-438. (1986) MR0853664DOI10.1007/BF01389540
- J. H. Bramble B. E. Hubbard, New monotone type approximations for elliptic problems, Math. Соmр. 18 (1964), 349-367. (1964) MR0165702
- A. N. Brooks T. J. R. Hughes, 10.1016/0045-7825(82)90071-8, Computer Math. in Appl. Mech. and Eng. 32 (1982), 199-259. (1982) MR0679322DOI10.1016/0045-7825(82)90071-8
- P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
- J. Dalík, An apriori error estimate of an approximation of a two-point boundary value problem by the Petrov-Galerkin method, (Czech). Knižnice obd. a věd. spisů VUT Brno, Sv. A-35 (1988), 19-28. (1988) MR0960239
- E. P. Doolan J. J. H. Miller W. H. A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980. (1980) MR0610605
- R. Ghwinski, Numerical nethods for nonlinear variational problems. Appendix II, Springer- -Verlag, New York, Berlin, 1984. (1984) MR0737005
- P. W. Hemker P. M. De Zeeuw, Defect correction for the solution of a singular perturbation problem, (preprint). Math. centrum, 1982. (1982) MR0685785
- P. W. Hemker, Numerical aspects of singular perturbation problems, (preprint). Math. centrum, Amsterdam, 1982. (1982) MR0708292
- T. lkeda, Maximum principle in finite element models for convection-diffusion phenomena, North-Holland, Amsterdam, New York, Oxford, 1983. (1983)
- C. Johnson U. Nävert, Analysis of some finite element methods for advection-diffusion problems, (research report). Chalmers Univ. of Techn., Goteborg, 1980. (1980) MR0605502
- C. Johnson U. Nävert J. Pitkäranta, Finite elements method for linear hyperbolic problems, (research report). Chalmers Univ. of Techn., Göteborg, 1982. (1982)
- U. Nävert, A finite element method for convection-diffusion problems, (thesis). Chalmers Univ. of Techn., Göteborg, 1982. (1982)
- U. Nävert, The streamline diffusion method for timedependent convection-diffusion problems with small diffusion, (research report). Chalmers Univ. of Techn., Göteborg, 1981. (1981)
- E. O'Riordan, 10.1007/BF01405573, Numer. Math. Vol. 44, 3 (1984), 425-434. (1984) Zbl0569.65065MR0757497DOI10.1007/BF01405573
- G. D. Raithby, 10.1016/0045-7825(76)90058-X, Comp. Meth. Appl. Mech. Eng. Vol 9 (1976), 153-164. (1976) Zbl0347.76066MR0443576DOI10.1016/0045-7825(76)90058-X
- P. A. Raviart, Les méthodes d'élements finis en mécanique des fluides II, 3. Edditions Eyrolles, Paris, 1981. (1981) MR0631851
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.