# $(R,S)$-information radius of type $t$ and comparison of experiments

Inder Jeet Taneja; Luis Pardo; D. Morales

Applications of Mathematics (1991)

- Volume: 36, Issue: 6, page 440-455
- ISSN: 0862-7940

## Access Full Article

top## Abstract

top## How to cite

topTaneja, Inder Jeet, Pardo, Luis, and Morales, D.. "$(R,S)$-information radius of type $t$ and comparison of experiments." Applications of Mathematics 36.6 (1991): 440-455. <http://eudml.org/doc/15692>.

@article{Taneja1991,

abstract = {Various information, divergence and distance measures have been used by researchers to compare experiments using classical approaches such as those of Blackwell, Bayesian ets. Blackwell's [1] idea of comparing two statistical experiments is based on the existence of stochastic transformations. Using this idea of Blackwell, as well as the classical bayesian approach, we have compared statistical experiments by considering unified scalar parametric generalizations of Jensen difference divergence measure.},

author = {Taneja, Inder Jeet, Pardo, Luis, Morales, D.},

journal = {Applications of Mathematics},

keywords = {divergence measures; information radius; statistical experiment; sufficiency of experiments; Shannon's entropy; comparison of experiments; stochastic transformations; ; unified scalar parametric generalizations of Jensen difference divergence measure; comparison of experiments; stochastic transformations; unified scalar parametric generalizations of Jensen difference divergence measure; information radius; sufficiency of experiments; Shannon's entropy},

language = {eng},

number = {6},

pages = {440-455},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {$(R,S)$-information radius of type $t$ and comparison of experiments},

url = {http://eudml.org/doc/15692},

volume = {36},

year = {1991},

}

TY - JOUR

AU - Taneja, Inder Jeet

AU - Pardo, Luis

AU - Morales, D.

TI - $(R,S)$-information radius of type $t$ and comparison of experiments

JO - Applications of Mathematics

PY - 1991

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 36

IS - 6

SP - 440

EP - 455

AB - Various information, divergence and distance measures have been used by researchers to compare experiments using classical approaches such as those of Blackwell, Bayesian ets. Blackwell's [1] idea of comparing two statistical experiments is based on the existence of stochastic transformations. Using this idea of Blackwell, as well as the classical bayesian approach, we have compared statistical experiments by considering unified scalar parametric generalizations of Jensen difference divergence measure.

LA - eng

KW - divergence measures; information radius; statistical experiment; sufficiency of experiments; Shannon's entropy; comparison of experiments; stochastic transformations; ; unified scalar parametric generalizations of Jensen difference divergence measure; comparison of experiments; stochastic transformations; unified scalar parametric generalizations of Jensen difference divergence measure; information radius; sufficiency of experiments; Shannon's entropy

UR - http://eudml.org/doc/15692

ER -

## References

top- Blackwell D. (1951), Comparison of experiments, Proc. 2nd Berkeley Symp. Berkeley: University of California Press, 93-102. MR0046002
- Burbea J. (1984), The Bose-Einstein Entropy of degree a and its Jensen Difference, Utilitas Math. 25, 225-240. MR0752861
- Burbea J., Rao C . R. (1982), 10.1016/0047-259X(82)90065-3, J. Multi. Analy. 12, 575 - 596. MR0680530DOI10.1016/0047-259X(82)90065-3
- Burbea J., Rao C. R. (1982), On the Convexity of some Divergence Measures based on Entropy Functions, IEEE Trans. on Inform. Theory IT-28, 489-495. MR0672884
- Capocelli R. M., Taneja I. J. (1984), Generalized Divergence Measures and Error Bounds, Proc. IEEE Internat. Conf. on Systems, man and Cybernetics, Oct. 9-12, Halifax, Canada, pp. 43 - 47.
- Campbell L. L. (1986), An extended Čencov characterization of the Information Metric, Proc. Ann. Math. Soc., 98, 135-141. MR0848890
- Čencov N. N. (1982), Statistical Decisions Rules and Optimal Inference, Trans. of Math. Monographs, 53, Am. Math. Soc., Providence, R. L. MR0645898
- De Groot M. H. (1970), Optimal Statistical Decisions, McGraw-Hill. New York. MR0356303
- Ferentinos K., Papaioannou T. (1982), 10.1016/0378-3758(82)90001-5, J. Statist. Plann. Inference 6, 309-317. MR0667911DOI10.1016/0378-3758(82)90001-5
- Goel P. K., De Groot (1979), 10.1214/aos/1176344790, Ann. Statist. 7, 1066-1077. MR0536509DOI10.1214/aos/1176344790
- Kullback S., Leibler A. (1951), On information and sufficiency, Ann. Math Stat. 27, 986-1005.
- Lindley D. V. (1956), 10.1214/aoms/1177728069, Ann. Math. Statis. 27, 986-1005. MR0083936DOI10.1214/aoms/1177728069
- Marshall A. W., Olkin I. (1979), Inequalities: Theory of Majorization and its Applications, Academic Press. New York. MR0552278
- Morales D., Taneja I. J., Pardo L., Comparison of Experiments based on $\phi $-Measures of Jensen Difference, Communicated.
- Pardo L., Morales D., Taneja I. J., $\lambda $-measures of hypoentropy and comparison of experiments: Bayesian approach, To appear in Statistica. Zbl0782.62011MR1173196
- Rao C. R. (1982), 10.1016/0040-5809(82)90004-1, J. Theoret. Pop. Biology, 21, 24-43. MR0662520DOI10.1016/0040-5809(82)90004-1
- Rao C. R., Nayak T. K. (1985), 10.1109/TIT.1985.1057082, IEEE Trans, on Inform. Theory, IT-31(5), 589-593. MR0808230DOI10.1109/TIT.1985.1057082
- Sakaguchi M. (1964), Information Theory and Decision Making, Unpublished Lecture Notes, Statist. Dept., George Washington Univ., Washington DC.
- Sanťanna A. P., Taneja I. J., Trigonometric Entropies, Jensen Difference Divergence Measures and Error Bounds, Information Sciences 25, 145-156. MR0794765
- Shannon C. E. (1948), 10.1002/j.1538-7305.1948.tb01338.x, Bell. Syst. Tech. J. 27, 379-423. MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
- Sibson R. (1969), 10.1007/BF00537520, Z. Wahrs. und verw. Geb. 14, 149-160. MR0258198DOI10.1007/BF00537520
- Taneja I. J.: 1(983), On characterization of J-divergence and its generalizations, J. Combin. Inform. System Sci. 8, 206-212. MR0783757
- Taneja I. J. (1986), $\lambda $-measures of hypoentropy and their applications, Statistica, anno XLVI, n. 4, 465-478. MR0887303
- Taneja I. J. (1986), Unified Measure of Information applied to Markov Chains and Sufficiency, J. Comb. Inform. & Syst. Sci., 11, 99-109. MR0966074
- Taneja I. J. (1987), 10.1016/0378-3758(87)90063-2, J. Statist. Plann. & Inferen., 16, 137-145. MR0895754DOI10.1016/0378-3758(87)90063-2
- Taneja I. J. (1989), On Generalized Information Measures and their Applications, Adv. Elect. Phys. 76, 327 - 413. Academic Press.
- Taneja I. J. (1990), Bounds on the Probability of Error in Terms of Generalized Information Radius, Information Sciences. 46.
- Taneja I. J., Morales D., Pardo L. (1991), $\lambda $-measures of hypoentropy and comparison of experiments: Blackwell and Lehemann approach, Kybernetika, 27, 413 - 420. MR1132603
- Vajda I. (1968), Bounds on the Minimal Error Probability and checking a finite or countable number of Hypothesis, Inform. Trans. Problems 4, 9-17. MR0267685
- Vajda I. (1989), Theory of Statistical Inference and Information, Kluwer Academic Publishers, Dordrecht/Boston/London/.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.