Affine-invariant monotone iteration methods with application to systems of nonlinear two-point boundary value problems
Applications of Mathematics (1992)
- Volume: 37, Issue: 2, page 123-138
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topVoller, Rudolf L.. "Affine-invariant monotone iteration methods with application to systems of nonlinear two-point boundary value problems." Applications of Mathematics 37.2 (1992): 123-138. <http://eudml.org/doc/15704>.
@article{Voller1992,
abstract = {In this paper we present a new theorem for monotone including iteration methods. The conditions for the operators considered are affine-invariant and no topological properties neither of the linear spaces nor of the operators are used. Furthermore, no inverse-isotony is demanded. As examples we treat some systems of nonlinear ordinary differential equations with two-point boundary conditions.},
author = {Voller, Rudolf L.},
journal = {Applications of Mathematics},
keywords = {partially ordered space; Newton-like iteration; affine-invariant; monotone including iteration methods; systems of nonlinear ordinary differential equations; partially ordered space; Newton-like iteration; affine-invariant; monotone including iteration methods; systems of nonlinear ordinary differential equations},
language = {eng},
number = {2},
pages = {123-138},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Affine-invariant monotone iteration methods with application to systems of nonlinear two-point boundary value problems},
url = {http://eudml.org/doc/15704},
volume = {37},
year = {1992},
}
TY - JOUR
AU - Voller, Rudolf L.
TI - Affine-invariant monotone iteration methods with application to systems of nonlinear two-point boundary value problems
JO - Applications of Mathematics
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 37
IS - 2
SP - 123
EP - 138
AB - In this paper we present a new theorem for monotone including iteration methods. The conditions for the operators considered are affine-invariant and no topological properties neither of the linear spaces nor of the operators are used. Furthermore, no inverse-isotony is demanded. As examples we treat some systems of nonlinear ordinary differential equations with two-point boundary conditions.
LA - eng
KW - partially ordered space; Newton-like iteration; affine-invariant; monotone including iteration methods; systems of nonlinear ordinary differential equations; partially ordered space; Newton-like iteration; affine-invariant; monotone including iteration methods; systems of nonlinear ordinary differential equations
UR - http://eudml.org/doc/15704
ER -
References
top- Alefeld G., Monotone Regula-falsi-ähnliche Verfahren bei nichtkonvexen Operatorgleichungen, Beitr. Numer. Math. 8 (1980), 15-30. (1980) Zbl0425.65034MR0564583
- Frommer N., 10.1002/zamm.19880680211, Z. Angew. Math. Mech. 68 (1988), 101-110. (1988) Zbl0663.65047MR0931771DOI10.1002/zamm.19880680211
- Korrnan P., Leung A. W., A general monotone scheme for elliptic systems with applications to ecological models, Proc. Roy. Soc. Edinb. 102A (1986), 315-325. (1986)
- Krasnoselski M., Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964. (1964) MR0181881
- McKenna P. J., Walter W., 10.1080/00036818608839592, Appl. Anal. 21 (1986), 207-224. (1986) Zbl0593.35042MR0840313DOI10.1080/00036818608839592
- Ortega J. M., Rheinboldt W.C., Iterative Solutions of Nonlinear Equations in Several Variables, Acad. Press, New York, 1970. (1970) MR0273810
- Potra F. A., 10.1016/0362-546X(87)90037-X, Nonl. Anal. Th., Meth. Appl. 11 (1987), 697-717. (1987) Zbl0633.65050MR0893775DOI10.1016/0362-546X(87)90037-X
- Potra F. A., 10.1080/01630568708816262, Numer. Funct. Anal. and Optimiz. 9 (1987), 809-843. (1987) Zbl0636.65056MR0910856DOI10.1080/01630568708816262
- Potra F.A., Rheinboldt W.C., 10.1007/BF02238194, Computing 36 (1986), 81-90. (1986) Zbl0572.65034MR0832932DOI10.1007/BF02238194
- Schmidt J. W., Schneider H., 10.1002/zamm.19830630103, Z. Angew. Math. Mech. 63 (1983), 3-11. (1983) Zbl0519.65036MR0701830DOI10.1002/zamm.19830630103
- Schmidt J. W., Schneider H., 10.1007/BF02243015, Comput. 32 (1984), 1-11. (1984) MR0736257DOI10.1007/BF02243015
- Voller R. L., Monoton einschließende Newton-ähnliche Iterationsverfahren in halbgeordneten Räumen mit nicht notwendig regularem Kegel, Dissertation, Düsseldorf 1982. (1982)
- Voller R. L., Iterative Einschließung von Lösungen nichtlinearer Differentialgleichungen durch Newton-ähnliche Iterationsverfahren, Apl. Mat. 31 (1986), 1-18. (1986) MR0836798
- Voss H., 10.1002/zamm.19760560509, Z. Angew. Math. Mech. 56 (1976), 218-219. (1976) Zbl0341.65040MR0408240DOI10.1002/zamm.19760560509
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.