A global analysis of Newton iterations for determining turning points

Vladimír Janovský; Viktor Seige

Applications of Mathematics (1993)

  • Volume: 38, Issue: 4-5, page 323-360
  • ISSN: 0862-7940

Abstract

top
The global convergence of a direct method for determining turning (limit) points of a parameter-dependent mapping is analysed. It is assumed that the relevant extended system has a singular root for a special parameter value. The singular root is clasified as a b i f u r c a t i o n s i n g u l a r i t y (i.e., as a d e g e n e r a t e turning point). Then, the Theorz for Imperfect Bifurcation offers a particular scenario for the split of the singular root into a finite number of regular roots (turning points) due to a given parameter imperfection. The relationship between the scenario and the actual performance of Newton method is studied. Both theoretical and experimental arguments are presented in order to quaetion the claim that a particular bifurcation singularity o r g a n i y e s the Newton method assuming small parameter perturbations.

How to cite

top

Janovský, Vladimír, and Seige, Viktor. "A global analysis of Newton iterations for determining turning points." Applications of Mathematics 38.4-5 (1993): 323-360. <http://eudml.org/doc/15758>.

@article{Janovský1993,
abstract = {The global convergence of a direct method for determining turning (limit) points of a parameter-dependent mapping is analysed. It is assumed that the relevant extended system has a singular root for a special parameter value. The singular root is clasified as a $bifurcation singularity$ (i.e., as a $degenerate$ turning point). Then, the Theorz for Imperfect Bifurcation offers a particular scenario for the split of the singular root into a finite number of regular roots (turning points) due to a given parameter imperfection. The relationship between the scenario and the actual performance of Newton method is studied. Both theoretical and experimental arguments are presented in order to quaetion the claim that a particular bifurcation singularity $organiyes$ the Newton method assuming small parameter perturbations.},
author = {Janovský, Vladimír, Seige, Viktor},
journal = {Applications of Mathematics},
keywords = {detection of turning points; Newton method; Newton flow; basins of attraction; qualitative analysis; normal forms of the flow; global convergence; singularity theory; bifurcation singularity; imperfect bifurcation; global convergence; Newton method; singularity theory; turning points; bifurcation singularity; imperfect bifurcation},
language = {eng},
number = {4-5},
pages = {323-360},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A global analysis of Newton iterations for determining turning points},
url = {http://eudml.org/doc/15758},
volume = {38},
year = {1993},
}

TY - JOUR
AU - Janovský, Vladimír
AU - Seige, Viktor
TI - A global analysis of Newton iterations for determining turning points
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 4-5
SP - 323
EP - 360
AB - The global convergence of a direct method for determining turning (limit) points of a parameter-dependent mapping is analysed. It is assumed that the relevant extended system has a singular root for a special parameter value. The singular root is clasified as a $bifurcation singularity$ (i.e., as a $degenerate$ turning point). Then, the Theorz for Imperfect Bifurcation offers a particular scenario for the split of the singular root into a finite number of regular roots (turning points) due to a given parameter imperfection. The relationship between the scenario and the actual performance of Newton method is studied. Both theoretical and experimental arguments are presented in order to quaetion the claim that a particular bifurcation singularity $organiyes$ the Newton method assuming small parameter perturbations.
LA - eng
KW - detection of turning points; Newton method; Newton flow; basins of attraction; qualitative analysis; normal forms of the flow; global convergence; singularity theory; bifurcation singularity; imperfect bifurcation; global convergence; Newton method; singularity theory; turning points; bifurcation singularity; imperfect bifurcation
UR - http://eudml.org/doc/15758
ER -

References

top
  1. Branin F.H., 10.1147/rd.165.0504, IBM J. Res. Develop. (1972), 504-522. (1972) MR0418449DOI10.1147/rd.165.0504
  2. Golubitski M., Schaeffer D., Singularities and Groups in Bifurcation Theory Vol. 1, Springer Verlag, New York, 1985. (1985) 
  3. Griewank A., Reddien G. W., 10.1137/0721012, SIAM J. Numer. Anal. 21 (1984), 176-185. (1984) MR0731221DOI10.1137/0721012
  4. Guckenheimer J., Holmes P., 10.1007/978-1-4612-1140-2, Appl. Math. Sci. 42, Springer Verlag, New York, 1983. (1983) MR0709768DOI10.1007/978-1-4612-1140-2
  5. Janovský V., Seige V., Qualitative analysis of Newton iterations for imperfect bifuracation singularities, I. A case study, submitted to SIAM J. Numer. Anal.. 
  6. Jepson A.D., Spence A., Singular points and their computation, In: Numerical Methods for Bifurcation Problems (Küpper T., Mittelmann H. D., Weber H., eds.), vol. ISNM 70, Birkhäuser Verlag, Basel, 1984, pp. 502-514. (1984) Zbl0579.65048MR0821051
  7. Jepson A.D., Spence A., 10.1137/0520004, SIAM J. Math. Anal 20 (1989), 39-56. (1989) Zbl0685.58003MR0977487DOI10.1137/0520004
  8. Jongen H. Th., Jonker P., Twilt F., A note on Branin's method for finding the critical points of smooth functions, In: Parameteric Optimization and Related Topics (Guddat J., Jongen H.Th., Kummer B., Nožička F., eds.), Akademie Verlag, Berlin, 1987, pp. 196-208. (1987) Zbl0625.65067MR0909730
  9. Keller H.В., Numerical solution of bifurcation and nonlinear eigenvalue problems, In: Applications of Bifurcation Theory (Rabinowitz P.H. ed.), Academic Press, New York, 1977, pp. 359-384. (1977) Zbl0581.65043MR0455353
  10. Kubíček M., Marek M., Evaluation of turning and bifurcation points for algebraic and nonlinear boundary value problems, Appl. Math. Соmр. 5 (1979), 106-121. (1979) 
  11. Kubíček M., Marek M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer Verlag, New York, 1983. (1983) MR0719370
  12. Melhem R.G., Rheinbold W. C., 10.1007/BF02241698, Computing 29 (1982), 201-226. (1982) MR0680470DOI10.1007/BF02241698
  13. Peitgen H.O., Prüfer M., Global aspects of Newton's method for nonlinear boundary value problems, In: Numerical Methods for Bifurcation Problems (Küpper T., Mittelmann H. D., Weber H., eds.), vol. ISNM 70, Birkhäuser Verlag, Basel, 1984, pp. 352-368. (1984) Zbl0539.65059MR0821041
  14. Pönisch G., Schwetlick H., 10.1007/BF02241778, Computing 26 (1981), 107-121. (1981) MR0619933DOI10.1007/BF02241778
  15. Raschman R., Schreiber I., Marek M., Periodic and aperiodic regimes in linear and cyclic arrays of coupled reaction diffusion cells, In: Lect. in Appl. Math. Vol. 24, pp. 61-100 (1986), AMS, Providence, RI. (1986) MR0840077
  16. Saupe D., 10.1007/BF00047502, Acta Applicandae Mathematicae 13 (1988), 59-80. (1988) Zbl0669.65037MR0979817DOI10.1007/BF00047502
  17. Smale S., 10.1090/S0273-0979-1985-15391-1, Bull. A.M.S. 13 (1985), 87-121. (1985) Zbl0592.65032MR0799791DOI10.1090/S0273-0979-1985-15391-1
  18. Spence A., Werner В., 10.1093/imanum/2.4.413, IMA. J. Numer. Anal. 2 (1982), 413-427. (1982) MR0692288DOI10.1093/imanum/2.4.413

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.