On the universal coverings of algebraic surfaces

L. Katzarkov; M. Ramachandran

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 4, page 525-535
  • ISSN: 0012-9593

How to cite

top

Katzarkov, L., and Ramachandran, M.. "On the universal coverings of algebraic surfaces." Annales scientifiques de l'École Normale Supérieure 31.4 (1998): 525-535. <http://eudml.org/doc/82468>.

@article{Katzarkov1998,
author = {Katzarkov, L., Ramachandran, M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {universal covering; algebraic surface; Shafarevich conjecture; compact Kähler surface; Galois covering; holomorphically convex covering},
language = {eng},
number = {4},
pages = {525-535},
publisher = {Elsevier},
title = {On the universal coverings of algebraic surfaces},
url = {http://eudml.org/doc/82468},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Katzarkov, L.
AU - Ramachandran, M.
TI - On the universal coverings of algebraic surfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 4
SP - 525
EP - 535
LA - eng
KW - universal covering; algebraic surface; Shafarevich conjecture; compact Kähler surface; Galois covering; holomorphically convex covering
UR - http://eudml.org/doc/82468
ER -

References

top
  1. [ACB] N. A' CAMPO and M. BURGER, Réseaux arithmétiques et commensurateur d'après G.A. Margulis, (Inventiones Mathematicae, Vol. 116, 1994, pp. 1-25). Zbl0833.22014MR96a:22019
  2. [AS] R. ALPERIN and P. SHALEN, Linear groups with finite cohomological dimension, (Inventiones matematicae, Vol. 66, 1982, pp. 89-98). Zbl0497.20042MR84a:20052
  3. [BS] A. BOREL and J. P. SERRE, Cohomologie d'immeubles et de groupes S-arithmétiques, Topology, Vol. 15, 1976, pp. 211-232). Zbl0338.20055MR56 #5786
  4. [BCC] E. BALLICO, F. CATANESE and C. CILIBERTO (Eds.), Trento examples, (Classification of higher dimensional varieties, Proceedings, Trento 1990, Springer LNM, Vol. 1515, 1992, pp. 134-139). 
  5. [CT] J. CARLSON and D. TOLEDO, Quadratic Presentations and Nilpotent Kähler Groups (J. Geom. Anal., Vol. 5, 1995, pp. 359-377. Zbl0835.57014MR97c:32038
  6. [Ca] H. CARTAN, Quotients of complex analytic spaces, ("Contributions to Function Theory", Proceedings of the International Colloqium in Function Theory, TIFR, 1960, pp. 1-15). Zbl0122.08702MR25 #3199
  7. [C] K. CORLETTE, Flat G-bundles with canonical metrics (J. Differential Geometry, Vol. 28, 1988, pp. 361-382). Zbl0676.58007MR89k:58066
  8. [DEM] J. P. DEMAILLY, Cohomology of q-convex spaces in top degrees (Math. Zeit., Vol. 204, 1990, pp. 283-295). Zbl0682.32017MR91e:32014
  9. [DEL] P. DELIGNE, Theorie de Hodge II, (Publ. Math. I.H.E.S., Vol. 40, (1971), pp. 5-58). Zbl0219.14007MR58 #16653a
  10. [GM] M. GORESKY and R. MACPHERSON, Stratified Morse Theory, Springer Verlag, 1988. Zbl0639.14012MR90d:57039
  11. [GR] H. GRAUERT, On the Levi's problem and the embedings of real analytic manifolds (Ann. of Math. II Ser., Vol. 68, (1958), pp. 460-472). Zbl0108.07804MR20 #5299
  12. [GS] M. GROMOV and R. SCHOEN, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one (Publ. Math. I.H.E.S., Vol. 76, 1992, pp. 165-246). Zbl0896.58024MR94e:58032
  13. [HI] N. J. HITCHIN, The self-duality equations on a Riemann surface (Proc. Lond. Math. Soc., Vol. 55, (3), 1987, pp. 59-126). Zbl0634.53045MR89a:32021
  14. [JZ] J. JOST and K. ZUO, Harmonic maps into Tits buildings, factorization of non p-adic integral and nonrigid representations of π1 of algebraic varieties, to appear in Journal of Algebraic Geometry. 
  15. [LAR] M. LARSEN, Maximality of the Galois action on compatibility systems (Duke Mathematical Journal, Vol. 80, 1995, pp. 601-631). Zbl0912.11026MR97a:11090
  16. [KPR] L. KATZARKOV, T. PANTEV and M. RAMACHANDRAN, Geometric factorization of linear fundamental groups, in preparation. 
  17. [K] L. KATZARKOV, Nilpotent groups and universal coverings Journal of Differential geometry, Vol. 45, 1997, pp. 336-349). Zbl0876.14008MR98g:14015
  18. [K1] J. KOLLÁR, Shafarevich maps and plurigenera of algebraic varieties (Inventiones Matematicae, Vol. 113, Fasc. 1, 1993, pp. 177-215). Zbl0819.14006MR94m:14018
  19. [K2] J. KOLLÁR, Shafarevich maps and automorphic forms, Princeton University Press, Princeton, NJ, 1995. Zbl0871.14015MR96i:14016
  20. [LR] B. LASELL and M. RAMACHANDRAN, Observations on harmonic maps and singular varieties (Ann. Sci. École Norm. Sup., Vol. 29, 1996, pp. 135-148). Zbl0855.58018MR97c:32036
  21. [N1] T. NAPIER, Convexity properties of coverings of smooth projective varieties (Mathematische Annalen, Vol. 286, 1990, pp. 433-449). Zbl0733.32008MR91g:32015
  22. [NR] T. NAPIER and M. RAMACHANDRAN, Structure theorems for complete Kähler manifolds and applications to a Lefshetz type of theorems (GAFA, Vol. 5, 1995, pp. 809-851). Zbl0860.53045MR96g:32020
  23. [N] R. NARASHIMHAN, The Levi problem for complex spaces II (Mathematische Annalen, Vol. 146, 1962, pp. 195-216). Zbl0131.30801MR32 #229
  24. [SIM1] C. T. SIMPSON, Constructing variations of Hodge structures using Yang-Mills theory and applications to uniformization (Journal of A.M.S., Vol. 1, 1988, pp. 368-391). Zbl0669.58008MR90e:58026
  25. [SIM2] C. T. SIMPSON, Some families of local systems over smooth projective varieties (Annals of Mathematics, Vol. 138, 1993, pp. 337-425). Zbl0813.14014MR94f:14005
  26. [S3] C. T. SIMPSON, A Lefschetz theorem for π0 of the integral leaves of holomorphic one-form (Compositio matematicae, Vol. 87, 1993, pp. 99-113). Zbl0802.58004MR94h:32065
  27. [Si] Y. T. SIU, Every Stein subvariety admits a Stein neighborhood (Inventiones Math., Vol. 38, 1976, pp. 89-100). Zbl0343.32014MR55 #8407
  28. [Z] K. ZUO, Factorizations of nonrigid Zariski dense representations of π1 of projective algebraic manifolds (Inventiones Math., Vol. 118, 1994, no. 1, pp. 37-46). Zbl0843.14008MR95k:14022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.