A rigid relation exists on any set

Petr Vopěnka; Aleš Pultr; Zdeněk Hedrlín

Commentationes Mathematicae Universitatis Carolinae (1965)

  • Volume: 006, Issue: 2, page 149-155
  • ISSN: 0010-2628

How to cite

top

Vopěnka, Petr, Pultr, Aleš, and Hedrlín, Zdeněk. "A rigid relation exists on any set." Commentationes Mathematicae Universitatis Carolinae 006.2 (1965): 149-155. <http://eudml.org/doc/16118>.

@article{Vopěnka1965,
author = {Vopěnka, Petr, Pultr, Aleš, Hedrlín, Zdeněk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {set theory},
language = {eng},
number = {2},
pages = {149-155},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A rigid relation exists on any set},
url = {http://eudml.org/doc/16118},
volume = {006},
year = {1965},
}

TY - JOUR
AU - Vopěnka, Petr
AU - Pultr, Aleš
AU - Hedrlín, Zdeněk
TI - A rigid relation exists on any set
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1965
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 006
IS - 2
SP - 149
EP - 155
LA - eng
KW - set theory
UR - http://eudml.org/doc/16118
ER -

References

top
  1. L. BUKOVSKÝ Z. HEDRLÍN A. PULTR, On topological representation of semigroups and small categories, to appear in Matematicko-fyzikálny časopis SAV. MR0191933
  2. Z. HEDRLÍN A. PULTR, Remark on topological spaces with given semigroups, Comm. Math. Univ. Car. 4, 4, 161-163 (1963). (1963) MR0166768
  3. Z. HEDRLÍN A. PULTR, Symmetric relations (Undirected graphs) with given semigroups, to appear in Mh. Mathematik. MR0188082
  4. A. PULTR Z. HEDRLÍN, Relations (Graphs) with given infinite semigroups, Mh. Mathematik 58, 421-425 (1964). . (1964) MR0170841
  5. A. PULTR, Concerning universal categories, Comm. Math. Univ. Car. 5, 4, 227-239 (1964). (1964) Zbl0135.02101MR0173696
  6. A. ПУЛЬТР З. ГЕДРЛИН, О представлении малых категорий, to appear in Докл. Акад. Наук CCCP. 

Citations in EuDML Documents

top
  1. W. Lampe, J. Sichler, V. Trnková, Homomorphisms of unary algebras and of their expansions
  2. Luděk Kučera, On the monoids of homomorphisms of semigroups with unity
  3. Jiří Sichler, Category of commutative groupoids is binding
  4. Aleš Pultr, Jiří Sichler, Primitive classes of algebras with two unary idempotent operations, containing all algebraic categories as full subcategories
  5. Radovan Gregor, On rich monoids
  6. Jaroslav Nešetřil, Infinite precise objects
  7. Věra Trnková, Universal categories
  8. Lev Bukovský, Zdeněk Hedrlín, Aleš Pultr, On topological representation of semigroups and small categories
  9. Aleš Pultr, On full embeddings of concrete categories with respect to forgetful functors
  10. Václav Koubek, Graphs with given subgraphs represent all categories. II.

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.