Homomorphisms of unary algebras and of their expansions
W. Lampe; J. Sichler; V. Trnková
Colloquium Mathematicae (1993)
- Volume: 64, Issue: 1, page 79-92
- ISSN: 0010-1354
Access Full Article
topHow to cite
topLampe, W., Sichler, J., and Trnková, V.. "Homomorphisms of unary algebras and of their expansions." Colloquium Mathematicae 64.1 (1993): 79-92. <http://eudml.org/doc/210176>.
@article{Lampe1993,
author = {Lampe, W., Sichler, J., Trnková, V.},
journal = {Colloquium Mathematicae},
keywords = {simultaneous representation; algebra; reduct; representation of pairs of monoids; reduct of an algebra; expansion; endomorphism monoid},
language = {eng},
number = {1},
pages = {79-92},
title = {Homomorphisms of unary algebras and of their expansions},
url = {http://eudml.org/doc/210176},
volume = {64},
year = {1993},
}
TY - JOUR
AU - Lampe, W.
AU - Sichler, J.
AU - Trnková, V.
TI - Homomorphisms of unary algebras and of their expansions
JO - Colloquium Mathematicae
PY - 1993
VL - 64
IS - 1
SP - 79
EP - 92
LA - eng
KW - simultaneous representation; algebra; reduct; representation of pairs of monoids; reduct of an algebra; expansion; endomorphism monoid
UR - http://eudml.org/doc/210176
ER -
References
top- [1] E. Graczyńska, A generalization of Płonka sums, Fund. Math. 120 (1984), 53-62. Zbl0537.08001
- [2] Z. Hedrlín and A. Pultr, On full embeddings of categories of algebras, Illinois J. Math. 10 (1966), 392-406.
- [3] B. Jónsson and E. Nelson, Relatively free products in regular varieties, Algebra Universalis 4 (1974), 14-19. Zbl0319.08002
- [4] M. Petrich, J. Sichler and V. Trnková, Simultaneous representations in categories of algebras, ibid. 27 (1990), 426-453. Zbl0733.18002
- [5] J. Płonka, On the sum of a direct system of universal algebras with nullary polynomials, ibid. 19 (1984), 197-207. Zbl0548.08001
- [6] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, Amsterdam 1980.
- [7] J. Sichler, Testing categories and strong universality, Canad. J. Math. 25 (1973), 370-385. Zbl0265.18006
- [8] P. Vopěnka, A. Pultr and Z. Hedrlín, A rigid relation exists on any set, Comment. Math. Univ. Carolin. 6 (1965), 149-155.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.