Infinite precise objects

Jaroslav Nešetřil

Mathematica Slovaca (1978)

  • Volume: 28, Issue: 3, page 253-260
  • ISSN: 0232-0525

How to cite

top

Nešetřil, Jaroslav. "Infinite precise objects." Mathematica Slovaca 28.3 (1978): 253-260. <http://eudml.org/doc/32100>.

@article{Nešetřil1978,
author = {Nešetřil, Jaroslav},
journal = {Mathematica Slovaca},
keywords = {infinite graphs; Moore graphs; friendship graphs; tactical configurations},
language = {eng},
number = {3},
pages = {253-260},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Infinite precise objects},
url = {http://eudml.org/doc/32100},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Nešetřil, Jaroslav
TI - Infinite precise objects
JO - Mathematica Slovaca
PY - 1978
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 28
IS - 3
SP - 253
EP - 260
LA - eng
KW - infinite graphs; Moore graphs; friendship graphs; tactical configurations
UR - http://eudml.org/doc/32100
ER -

References

top
  1. BANNAI E., ITO T., On finite Moore graphs, J. Fac. Sci. Univ. Tokyo Sect. I-A 20, 1973. 191-208. (1973) Zbl0275.05121MR0323615
  2. BOSÁK J., On the k-index of graphs, Discгete Math., 1. 1971, 133-146. (1971) Zbl0219.05079MR0292706
  3. BOSÁK J., KOTZIG A., ZNÁM Š., Strongly geodetic graphs, J. Comb. Th.. 5, 1968, 170-176. (1968) Zbl0165.26602MR0228365
  4. BOSE R. C., Stгongly regular graphs, partial geometries and paгtially balanced designs, Pacific J. Math., 13, 1963, 389-419. (1963) MR0157909
  5. DAMERELL R. M., On Moore graphs, Pгoc. Cambridge Philos. Soc, 74, 1973. 227-236. (1973) Zbl0262.05132MR0318004
  6. ERDÖS P., RÉNYI A., SÓS V. T., On a problem of gгaph theoгy, Studia Sci. Math. Hunger, 1, 1966, 215-236. (1966) 
  7. ERDÖS P., Graph theory and probability, Canad. J. Math., 11, 1959, 34-38. (1959) MR0102081
  8. HEDRLÍN Z., PULTR A., Symmetric гelations (undiгected graphs) with given semigгoups, Monatsh. Math., 69, 1965, 318-322. (1965) MR0188082
  9. HELL P., NEŠETŘIL J., Graphs and k-societes, Canad. Math. Bull., 13, 1970, 375-381. (1970) MR0276124
  10. HELL P., NEŠETŘIL J., On edge sets of rigid and corigid graphs to appear in Math, Nachг. MR0371739
  11. HOFFMAN A. J., SINGLETON R. R., On Mooгe gгaphs with diameters 2 and 3, IBM J. Res. Develop., 4, 1960, 497-504. (1960) MR0140437
  12. NEŠETŘIL J., On symmetric and antisymmetric relations, Monath. Math., 76, 1972, 323-327. (1972) MR0318038
  13. VOPĚNKA P., PULTR A., HEDRLÍN Z., A rigid relation exists on any set, Comment. Math. Univ. Carolinae, 6, 1965, 149-155. (1965) MR0183647

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.