Comparability and conditional maximality of measures supported by finite sets of real numbers

Pavel Čihák

Commentationes Mathematicae Universitatis Carolinae (1969)

  • Volume: 010, Issue: 3, page 493-507
  • ISSN: 0010-2628

How to cite

top

Čihák, Pavel. "Comparability and conditional maximality of measures supported by finite sets of real numbers." Commentationes Mathematicae Universitatis Carolinae 010.3 (1969): 493-507. <http://eudml.org/doc/16339>.

@article{Čihák1969,
author = {Čihák, Pavel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {3},
pages = {493-507},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Comparability and conditional maximality of measures supported by finite sets of real numbers},
url = {http://eudml.org/doc/16339},
volume = {010},
year = {1969},
}

TY - JOUR
AU - Čihák, Pavel
TI - Comparability and conditional maximality of measures supported by finite sets of real numbers
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1969
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 010
IS - 3
SP - 493
EP - 507
LA - eng
UR - http://eudml.org/doc/16339
ER -

References

top
  1. N. BOURBAKI, Espaces vectoriels topologiques, Paris. Zbl1106.46003
  2. P. CARTIER J. FELL P. A. MEYER, Comparaison des measures portées par un ensemble convexe compact, Bull. Soc. Math. France 92 (1964), 435-445. (1964) MR0206193
  3. P. ČIHÁK, On an exposed element of a set of doublystochastic rectangular matrices, to appear in Comment. Math. Univ. Carolinae. 
  4. G. CHOQUET P. A. MEYER, Existence et unicité des representations intégrals dans les convexes compacts quelconques, Ann. Inst. Fourier (Grenoble) 13 (1963), 139-154. (1963) MR0149258
  5. F. A. VALENTINE, Convex sets, New York 1964, 15-25. (1964) Zbl0129.37203MR0170264
  6. R. R. PHELPS, Lectures on Choquet's theorem, Van Nostrand, New York, 1966. (1966) Zbl0135.36203MR0193470

NotesEmbed ?

top

You must be logged in to post comments.