Approximation by Hill functions

Ivo Babuška

Commentationes Mathematicae Universitatis Carolinae (1970)

  • Volume: 011, Issue: 4, page 787-811
  • ISSN: 0010-2628

How to cite

top

Babuška, Ivo. "Approximation by Hill functions." Commentationes Mathematicae Universitatis Carolinae 011.4 (1970): 787-811. <http://eudml.org/doc/16399>.

@article{Babuška1970,
author = {Babuška, Ivo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {4},
pages = {787-811},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Approximation by Hill functions},
url = {http://eudml.org/doc/16399},
volume = {011},
year = {1970},
}

TY - JOUR
AU - Babuška, Ivo
TI - Approximation by Hill functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1970
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 011
IS - 4
SP - 787
EP - 811
LA - eng
UR - http://eudml.org/doc/16399
ER -

References

top
  1. D. C. ZIENKIEWICZ, The finite element method in structural and continuum mechanics, London, McGraw-Hill, 1967. (1967) Zbl0189.24902
  2. M. ZLÁMAL, On the Finite Element Method, Num. Math. 12 (1968), 394-409. (1968) MR0243753
  3. G. BIRKHOFF M. H. SCHULZ R. S. VARGA, Piecewise Hermite interpolation in one and two variables with applications to partial differential equations, Num. Math. 11 (1968), 232-256. (1968) MR0226817
  4. I. BABUŠKA, Error-Bounds for Finite Element Method, Technical Note BN-630, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, November 1969. (1969) MR0288971
  5. I. BABUŠKA, Numerical Solution of Boundary Value Problems bv the Perturbed Variational Principle, Technical Note BN-626, Institute for Bluid Dynamics and Applied Mathematics, University of Maryland, October 1969. (1969) 
  6. I. BABUŠKA, The finite element method for elliptic equationa with discontinuous coefficients, Technical Note BN-631, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, December 1969. (1969) MR0277119
  7. I. BABUŠKA, Finite element method for domains with corners, Technical Note BN-636, Institute for Fluid. Dyaamics and Applied Mathematics, University of Maryland, January 1970. (1970) MR0293858
  8. I. BABUŠKA, The rate of convergence for the finite element method, Tech. Note BN-646, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. March 1970. (1970) MR0287715
  9. I. BABUŠKA, Computation of derivatives in the finite element method, Tech. Note BN-650, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. April 1970. CMUC 1970, 545-558. (1970) MR0275694
  10. I. BABUŠKA, The finite element method for elliptic differential equations, Tech. Note BN-653, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. May 1970 . (1970) 
  11. I. BABUŠKA J. SEGETHOVÁ K. SEGETH, Numerical experiments with finite element method I, Tech. Note BN-669, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. August 1970. (1970) 
  12. I. BABUŠKA, The finite element method for infinite domains I, Tech Note BN-670, University of Maryland Institute for Fluid Dynamics and Aplied Mathematica, August 1970. (1970) 
  13. I. BABUŠKA, Numerical stability of finite element method, To appear. 
  14. J. SEGETHOVÁ, Numerical construction of the hill functions, Tech. Ref. 70-110-NGL-21-002-008, 1970, University of Maryland, Comp. Science Center. (1970) 
  15. K. SEGETH, Problems of universal Approximation by Hill Functions, Tech. Note BN-619, 1970, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. (1970) 
  16. K. YOSIDA, Functional analysis, New York Academic Press, 1965. (1965) Zbl0126.11504MR0180824
  17. I. M. GEL'FAND G. M. SHILOV, Generalized functions, (translated from Russian), Vol. 1, Vol. 2, Academic Press, New York - London. 
  18. G. FIX G. STRANG, Fourier analysis of the finite element method in Ritz-Galerkin Theory, Studies in Applied Math, 48 (1969), 265-273. (1969) MR0258297
  19. G. STRANG G. FIX, A Fourier analysis of the finite element variational method, To appear. 
  20. F. D. GUGLIELMO, Construction d'approximations des espaces de Sobolev sur des riseaux en simplexes, Calcolo, Vol. 6 (1969), 279-331. (1969) MR0433113
  21. G. STRANG, The finite element method and approximation theory, To appear. Zbl0239.65085MR0287723

Citations in EuDML Documents

top
  1. Karel Segeth, Universal approximation by hill functions
  2. Richard S. Falk, A Ritz method based on a complementary variational principle
  3. Jitka Segethová, Reducing the bandwidth in solving linear algebraic systems arising in the finite element method
  4. J. H. Bramble, A. H. Schatz, Estimates for spline projections
  5. Karel Segeth, Universal approximation by systems of hill functions
  6. Ivo Babuška, A remark to the finite element method
  7. Ivo Babuška, Approximation by Hill functions. II.

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.