Piecewise Hermite Interpolation in One and Two Variables with Applications to Partial Differential Equations.
G. BIRKHOFF; R.S. VARGA; M.H. SCHULTZ
Numerische Mathematik (1968)
- Volume: 11, page 232-256
- ISSN: 0029-599X; 0945-3245/e
Access Full Article
topHow to cite
topBIRKHOFF, G., VARGA, R.S., and SCHULTZ, M.H.. "Piecewise Hermite Interpolation in One and Two Variables with Applications to Partial Differential Equations.." Numerische Mathematik 11 (1968): 232-256. <http://eudml.org/doc/131822>.
@article{BIRKHOFF1968,
author = {BIRKHOFF, G., VARGA, R.S., SCHULTZ, M.H.},
journal = {Numerische Mathematik},
keywords = {numerical analysis},
pages = {232-256},
title = {Piecewise Hermite Interpolation in One and Two Variables with Applications to Partial Differential Equations.},
url = {http://eudml.org/doc/131822},
volume = {11},
year = {1968},
}
TY - JOUR
AU - BIRKHOFF, G.
AU - VARGA, R.S.
AU - SCHULTZ, M.H.
TI - Piecewise Hermite Interpolation in One and Two Variables with Applications to Partial Differential Equations.
JO - Numerische Mathematik
PY - 1968
VL - 11
SP - 232
EP - 256
KW - numerical analysis
UR - http://eudml.org/doc/131822
ER -
Citations in EuDML Documents
top- Ronald Chen, Thomas Hagstrom, P-adaptive Hermite methods for initial value problems
- Ronald Chen, Thomas Hagstrom, -adaptive Hermite methods for initial value problems
- Ronald Chen, Thomas Hagstrom, -adaptive Hermite methods for initial value problems
- Ivan Hlaváček, On a semi-variational method for parabolic equations. I
- Ivo Babuška, Approximation by Hill functions
- Falko Baustian, Kateřina Filipová, Jan Pospíšil, Solution of option pricing equations using orthogonal polynomial expansion
- Stanislav Koukal, Piecewise polynomial interpolations in the finite element method
- František Melkes, The finite element method for non-linear problems
- J. Nitsche, Umkehrsätze für Spline-Approximationen
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.