Estimates for spline projections

J. H. Bramble; A. H. Schatz

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1976)

  • Volume: 10, Issue: R2, page 5-37
  • ISSN: 0764-583X

How to cite

top

Bramble, J. H., and Schatz, A. H.. "Estimates for spline projections." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 10.R2 (1976): 5-37. <http://eudml.org/doc/193279>.

@article{Bramble1976,
author = {Bramble, J. H., Schatz, A. H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {5-37},
publisher = {Dunod},
title = {Estimates for spline projections},
url = {http://eudml.org/doc/193279},
volume = {10},
year = {1976},
}

TY - JOUR
AU - Bramble, J. H.
AU - Schatz, A. H.
TI - Estimates for spline projections
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1976
PB - Dunod
VL - 10
IS - R2
SP - 5
EP - 37
LA - eng
UR - http://eudml.org/doc/193279
ER -

References

top
  1. 1. J.-P. AUBIN, Approximation des problèmes aux limites non homogènes et régularité de la convergence, Calcolo, Vol. 6, 1969, pp. 117-139. Zbl0201.12601
  2. 2. I. BABUSKA, Approximation by Hill Functions, Comment. Math., Univ. Carolinae, Vol. 11, 1970, pp. 787-811. Zbl0215.46404MR292309
  3. 3. I. BABUSKA, The Finite Element Method with Lagranian Multipliers, Numer. Math., vol. 20, 1973, pp. 179-192. Zbl0258.65108MR359352
  4. 4. I. BABUSKA, The Finite Element Method with Penalty, Math. Comp., Vol. 27, 1973, pp. 221-228. Zbl0299.65057MR351118
  5. 5. J. H. BRAMBLE and J. A. NITSCHE and A. H. SCHATZ, Maximum Norm Interior Estimates for Ritz Galerkin Methods, Math. Comp., vol. 29, 1976. Zbl0316.65023MR398120
  6. 6. J. H. BRAMBLE and J. E. OSBORN, Rate of Convergence Estimates for Non-Selfadjoint Eigenvalue Approximations, Math. Comp., Vol. 27, 1973, pp. 525-549. Zbl0305.65064MR366029
  7. 7. P. L. BUTZER and H. BERENS, Semi-Groups of Operators and Approximation, Die Grundlehren der math. Wissenschaften, Band 145, Springer-Verlag, New York, 1967. Zbl0164.43702MR230022
  8. 8. C. DE BOOR and G. FIX, Spline Approximation by Quasi-Interpolants, J. Approximation Theory, vol. 8, 1973, pp. 19-45. Zbl0279.41008MR340893
  9. 9. F. D. GUGLIELMO, Construction d'approximations des espaces de Sobolev sur des réseaux en simplexes, Calcolo, Vol. 6, 1969, pp. 279-331. Zbl0198.46206MR433113
  10. 10. G. FIX and G. STRANG, A Fourier Analysis of the Finite Element Method, Proc. CIME Conference, 1971, Cremonese, Rome (to appear). Zbl0356.65096MR443377
  11. 11. J. T. KING, New Error Bounds for the Penalty Method and Extrapolation, Numer. Math., vol. 23, 1974, pp. 153-165. Zbl0272.65092MR400742
  12. 12. J. A. NITSCHE and A. H. SCHATZ, On Local Approximation Properties of of L 2 -projection on Spline-subspaces, Applicable Analysis, Vol. 2, No. 2, July 1972. Zbl0239.41007
  13. 13. J. A. NITSCHE, Interior Estimates for Ritz Galerkin Methods (preprint). Zbl0298.65071
  14. 14. I. J. SCHOENBERG, Approximation with Special Emphasis on Spline Functions, Academic Press, New York, London, 1969. Zbl0259.00010MR251408
  15. 15. E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970. Zbl0207.13501MR290095
  16. 16. A. ZYGMUND, Trigonometrical Series, Vol. 2, Cambridge, England, 1959. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.