Upper bound for the number of eigenvalues for nonlinear operators
S. Fučik; J. Nečas; J. Souček; V. Souček
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1973)
- Volume: 27, Issue: 1, page 53-71
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFučik, S., et al. "Upper bound for the number of eigenvalues for nonlinear operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1973): 53-71. <http://eudml.org/doc/83631>.
@article{Fučik1973,
author = {Fučik, S., Nečas, J., Souček, J., Souček, V.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {53-71},
publisher = {Scuola normale superiore},
title = {Upper bound for the number of eigenvalues for nonlinear operators},
url = {http://eudml.org/doc/83631},
volume = {27},
year = {1973},
}
TY - JOUR
AU - Fučik, S.
AU - Nečas, J.
AU - Souček, J.
AU - Souček, V.
TI - Upper bound for the number of eigenvalues for nonlinear operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1973
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 53
EP - 71
LA - eng
UR - http://eudml.org/doc/83631
ER -
References
top- [1] A. Alicxiewicz, W. Orlicz: Analytic operation8 in real Banaoh apaces, Studia Math.XIV, 1954, 57-78. Zbl0052.34601
- [2] M.S. Berger: An eigenvalue problem for nonlinear elliptic partial differential equations, Trans. Amer. Math. Soc., 120, 1965, 145-184. Zbl0142.08402MR181821
- [3] F.E. Browder: Infinite dimensional ananifolds and nonlinear elliptic eigenvalue problems, Annals of Math.82, 1965, 459-477. Zbl0136.12002MR203249
- [4] E.S. Citlanadze: Bxistence theorearas for minimax points in Banach apaces (in Russian)Trudy Mosk. Mat. Obšč.2, 1953, 235-274. MR55574
- [5] S Fu6iK:Fredholnt alternative for nonlinear operators in Banach spaces and its applications to the differeaatial and integral equations, Cas. pro pest. mat.1971, No. 4.
- [6] S FučÍk:Note on the Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae12, 1971, 213-226. Zbl0215.21201MR288641
- [7] S. Fučík - J. Nečas: Ljusternik-,Sch,nirelmann theorem and nonlinear eigenvalue probletit8, Math. Nachr.53, 1972, 277-289 Zbl0215.21202MR333863
- [8] E. H- R.S. Philips: Functional analysis and semigroups, Providence1957. Zbl0078.10004
- [9] M.A. Krasnoselskij: Topological methods in the theory of nonlinear integral equations, Pergamon Press, N. Y.1964. Zbl0111.30303
- [10] M. Kučera: Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae11, 1970, 337-363. Zbl0198.18602MR267429
- [11] L.A. Ljusternik: On a class of nonlinear operators in Hilbert space (in Russian)Izv. Ak. Nank SSSR, ser. mat., No 5, 1939, 257-264.
- [12] L.A. Ljusternik - L.G. Schnirelmann: Application of topology to variationat problems (in Russian) Trudy 2. Vsesujuz, mat. sjezda1, 1935, 224-237. Zbl0015.21403
- [13] L.A. Ljusternik - L.G. Schnirelmann: Topological methods in variational problems and their application to the differential geometry of surface (in Russian)Uspechi Mat. NankII, 1947, 166-217.
- [14] J. Nečas: Les methodes direcfes en thérie des équations elliptiques, Academia, Praha1967.
- [15] J. Nečas: Sur l'alternative de Fredholm pour les operateurs non lineairee avec applications aux problèmes aux limites, Ann. Scuola Norm. Sup. Pisa, XXIII, 1969, 331-345. Zbl0187.08103MR267430
- [16] J. Souček - V. Souček: The Morse-Bard theorem for real-analytic functions, Comment. Math. Univ. Carolinae, 13, 1972, 45-51. Zbl0235.26012MR308345
- [17] M.M. Vajnberg: Variational methods for the study of nonlinear operators, Holden-Day, 1964. Zbl0122.35501
- [18] J. Nečas: On the discreteneas of the spectrum of nonlinear Sturm-Liouville equation (in Russian)Dokl. Akad. Nank SSSR, 201, 1971, 1045-1048. Zbl0252.47071MR291547
- [19] A. Kratochvíl - J. Nečas: On the dieoreteness of the speotrum of nonlinear Sturm-Liouville equation of the fourth order (in Russian)Comment. Math. Univ. Carolinae, 12, 1971, 639-653. Zbl0229.34015MR291882
- [20] J. Nečas: Fredholm alternative for nonlinear operators and applicationa to partial differeittial equations and integral equations (to appear). Zbl0234.47050
- [21] J. Nečas: Remark on the Fredholm alternative for nonlinear operators with applioation to sntegrat equations of generalized Hammerstein type (to appear).
Citations in EuDML Documents
top- Svatopluk Fučík, Jindřich Nečas, Jiří Souček, Vladimír Souček, Strengthening upper bound for the number of critical levels of nonlinear functionals
- Svatopluk Fučík, Milan Kučera, Jindřich Nečas, Jiří Souček, Vladimír Souček, Morse-Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels
- Jiří Souček, Vladimír Souček, On the spectrum of a nonlinear operator
- Jiří Souček, Morse-Sard theorem for closed geodesics
- Svatopluk Fučík, Спектральный анализ нелинейных операторов
- Ivan Hlaváček, Oldřich John, Alois Kufner, Josef Málek, Nečasová, Š. , Jana Stará, Vladimír Šverák, In Memoriam Jindřich Nečas
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.