Upper bound for the number of eigenvalues for nonlinear operators

S. Fučik; J. Nečas; J. Souček; V. Souček

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1973)

  • Volume: 27, Issue: 1, page 53-71
  • ISSN: 0391-173X

How to cite

top

Fučik, S., et al. "Upper bound for the number of eigenvalues for nonlinear operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1973): 53-71. <http://eudml.org/doc/83631>.

@article{Fučik1973,
author = {Fučik, S., Nečas, J., Souček, J., Souček, V.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {53-71},
publisher = {Scuola normale superiore},
title = {Upper bound for the number of eigenvalues for nonlinear operators},
url = {http://eudml.org/doc/83631},
volume = {27},
year = {1973},
}

TY - JOUR
AU - Fučik, S.
AU - Nečas, J.
AU - Souček, J.
AU - Souček, V.
TI - Upper bound for the number of eigenvalues for nonlinear operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1973
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 53
EP - 71
LA - eng
UR - http://eudml.org/doc/83631
ER -

References

top
  1. [1] A. Alicxiewicz, W. Orlicz: Analytic operation8 in real Banaoh apaces, Studia Math.XIV, 1954, 57-78. Zbl0052.34601
  2. [2] M.S. Berger: An eigenvalue problem for nonlinear elliptic partial differential equations, Trans. Amer. Math. Soc., 120, 1965, 145-184. Zbl0142.08402MR181821
  3. [3] F.E. Browder: Infinite dimensional ananifolds and nonlinear elliptic eigenvalue problems, Annals of Math.82, 1965, 459-477. Zbl0136.12002MR203249
  4. [4] E.S. Citlanadze: Bxistence theorearas for minimax points in Banach apaces (in Russian)Trudy Mosk. Mat. Obšč.2, 1953, 235-274. MR55574
  5. [5] S Fu6iK:Fredholnt alternative for nonlinear operators in Banach spaces and its applications to the differeaatial and integral equations, Cas. pro pest. mat.1971, No. 4. 
  6. [6] S FučÍk:Note on the Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae12, 1971, 213-226. Zbl0215.21201MR288641
  7. [7] S. Fučík - J. Nečas: Ljusternik-,Sch,nirelmann theorem and nonlinear eigenvalue probletit8, Math. Nachr.53, 1972, 277-289 Zbl0215.21202MR333863
  8. [8] E. H- R.S. Philips: Functional analysis and semigroups, Providence1957. Zbl0078.10004
  9. [9] M.A. Krasnoselskij: Topological methods in the theory of nonlinear integral equations, Pergamon Press, N. Y.1964. Zbl0111.30303
  10. [10] M. Kučera: Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae11, 1970, 337-363. Zbl0198.18602MR267429
  11. [11] L.A. Ljusternik: On a class of nonlinear operators in Hilbert space (in Russian)Izv. Ak. Nank SSSR, ser. mat., No 5, 1939, 257-264. 
  12. [12] L.A. Ljusternik - L.G. Schnirelmann: Application of topology to variationat problems (in Russian) Trudy 2. Vsesujuz, mat. sjezda1, 1935, 224-237. Zbl0015.21403
  13. [13] L.A. Ljusternik - L.G. Schnirelmann: Topological methods in variational problems and their application to the differential geometry of surface (in Russian)Uspechi Mat. NankII, 1947, 166-217. 
  14. [14] J. Nečas: Les methodes direcfes en thérie des équations elliptiques, Academia, Praha1967. 
  15. [15] J. Nečas: Sur l'alternative de Fredholm pour les operateurs non lineairee avec applications aux problèmes aux limites, Ann. Scuola Norm. Sup. Pisa, XXIII, 1969, 331-345. Zbl0187.08103MR267430
  16. [16] J. Souček - V. Souček: The Morse-Bard theorem for real-analytic functions, Comment. Math. Univ. Carolinae, 13, 1972, 45-51. Zbl0235.26012MR308345
  17. [17] M.M. Vajnberg: Variational methods for the study of nonlinear operators, Holden-Day, 1964. Zbl0122.35501
  18. [18] J. Nečas: On the discreteneas of the spectrum of nonlinear Sturm-Liouville equation (in Russian)Dokl. Akad. Nank SSSR, 201, 1971, 1045-1048. Zbl0252.47071MR291547
  19. [19] A. Kratochvíl - J. Nečas: On the dieoreteness of the speotrum of nonlinear Sturm-Liouville equation of the fourth order (in Russian)Comment. Math. Univ. Carolinae, 12, 1971, 639-653. Zbl0229.34015MR291882
  20. [20] J. Nečas: Fredholm alternative for nonlinear operators and applicationa to partial differeittial equations and integral equations (to appear). Zbl0234.47050
  21. [21] J. Nečas: Remark on the Fredholm alternative for nonlinear operators with applioation to sntegrat equations of generalized Hammerstein type (to appear). 

Citations in EuDML Documents

top
  1. Svatopluk Fučík, Jindřich Nečas, Jiří Souček, Vladimír Souček, Strengthening upper bound for the number of critical levels of nonlinear functionals
  2. Svatopluk Fučík, Milan Kučera, Jindřich Nečas, Jiří Souček, Vladimír Souček, Morse-Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels
  3. Jiří Souček, Vladimír Souček, On the spectrum of a nonlinear operator
  4. Jiří Souček, Morse-Sard theorem for closed geodesics
  5. Svatopluk Fučík, Спектральный анализ нелинейных операторов
  6. Ivan Hlaváček, Oldřich John, Alois Kufner, Josef Málek, Nečasová, Š. , Jana Stará, Vladimír Šverák, In Memoriam Jindřich Nečas

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.