Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds.
Mathematische Annalen (1991)
- Volume: 290, Issue: 4, page 689-712
- ISSN: 0025-5831; 1432-1807/e
Access Full Article
topHow to cite
topLempert, László, and Szöke, Róbert. "Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds.." Mathematische Annalen 290.4 (1991): 689-712. <http://eudml.org/doc/164841>.
@article{Lempert1991,
author = {Lempert, László, Szöke, Róbert},
journal = {Mathematische Annalen},
keywords = {Monge-Ampère equation; global regularity; singular variety; exhaustion function},
number = {4},
pages = {689-712},
title = {Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds.},
url = {http://eudml.org/doc/164841},
volume = {290},
year = {1991},
}
TY - JOUR
AU - Lempert, László
AU - Szöke, Róbert
TI - Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds.
JO - Mathematische Annalen
PY - 1991
VL - 290
IS - 4
SP - 689
EP - 712
KW - Monge-Ampère equation; global regularity; singular variety; exhaustion function
UR - http://eudml.org/doc/164841
ER -
Citations in EuDML Documents
top- Róbert Szőke, Adapted complex structures and Riemannian homogeneous spaces
- Éric Leichtnam, François Golse, Matthew Stenzel, Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds
- Giorgio Patrizio, Foliazioni di Monge-Ampère e classificazione olomorfa
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.