Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds

Éric Leichtnam; François Golse; Matthew Stenzel

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 6, page 669-736
  • ISSN: 0012-9593

How to cite

top

Leichtnam, Éric, Golse, François, and Stenzel, Matthew. "Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds." Annales scientifiques de l'École Normale Supérieure 29.6 (1996): 669-736. <http://eudml.org/doc/82420>.

@article{Leichtnam1996,
author = {Leichtnam, Éric, Golse, François, Stenzel, Matthew},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {heat-kernel; microlocal analytic singularities; F.B.I.; transform},
language = {eng},
number = {6},
pages = {669-736},
publisher = {Elsevier},
title = {Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds},
url = {http://eudml.org/doc/82420},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Leichtnam, Éric
AU - Golse, François
AU - Stenzel, Matthew
TI - Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 6
SP - 669
EP - 736
LA - eng
KW - heat-kernel; microlocal analytic singularities; F.B.I.; transform
UR - http://eudml.org/doc/82420
ER -

References

top
  1. [B-L-R] C. BARDOS, G. LEBEAU and J. Rauch, Scattering Frequencies and Gevrey 3 Singularities (Inv. Math., Vol. 90, 1987, pp. 77-114). Zbl0723.35058MR89h:35252
  2. [B-G-M] M. BERGER, P. GAUDUCHON and E. MAZET, Le Spectre d'une Variété Riemannienne (Lecture Notes in Mathematics, 194, Springer Verlag). Zbl0223.53034MR43 #8025
  3. [BdM] L. BOUTET DE MONVEL, Convergence dans le domaine complexe des séries de fonctions propres (C. R. Acad. Sc. Paris, T. 287, Series A, 1978, pp. 855-856). Zbl0392.35043MR80i:58040
  4. [Bo] A. BOREL, Compact Clifford-Klein forms of symmetric spaces (Topology, Vol. 2, 1963, pp. 111-122). Zbl0116.38603MR26 #3823
  5. [B-W] F. BRUHAT and H. WHITNEY, Quelques propriétés fondamentales des ensembles analytiques-réels (Commentarii Math. Helvet., Vol. 33, 1959, pp. 132-160). Zbl0100.08101MR21 #889
  6. [C-P] CHAZARAIN-PIRIOU, Introduction à la Théorie des Équations aux Dérivées Partielles Linéaires, Gauthier-Villars. Zbl0446.35001
  7. [C] A. CONNES, Noncommutative Geometry (Academic Press, New York 1994). Zbl0818.46076MR95j:46063
  8. [D] J-M. DELORT, FBI Transformation, Second Microlocalization and Semilinear Caustics, (Lecture Notes in Mathematics, 1522, Springer Verlag). Zbl0760.35004
  9. [D-G] J. DUISTERMAAT and V. GUILLEMIN, The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristics (Inv. Math., Vol. 29, 1975, pp. 39-79). Zbl0307.35071MR53 #9307
  10. [E-M] C. EPSTEIN and R. MELROSE, Shrinking tubes and the ∂-Neumann problem, preprint 1991. 
  11. [G] V. GUILLEMIN, Toeplitz Operators in n-dimensions, Integral Equations and Operator Theory, Vol. 7, 1984, pp. 145-205. Zbl0561.47025MR86i:58130
  12. [G-S1] V. GUILLEMIN and M. STENZEL, Grauert tubes and the homogeneous Monge-Ampère equation. I (J. Differential Geometry, Vol. 34, 1991, pp. 561-570). Zbl0746.32005MR93e:32018
  13. [G-S2] V. GUILLEMIN and M. STENZEL, Grauert tubes and the homogeneous Monge-Ampère equation. II (J. Differential Geometry, Vol. 35, 1992, pp. 627-641). Zbl0789.32010MR94e:32032
  14. [He1] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, 2nd ed. (Academic Press, 1978). Zbl0451.53038
  15. [He2] S. HELGASON, Groups and Geometric Analysis (Academic Press, 1984). Zbl0543.58001MR86c:22017
  16. [Hz] P. HEINZNER, Equivariant holomorphic extensions of real analytic manifolds, (Bull. Soc. Math. France, Vol. 121, 1993, pp. 445-463). Zbl0794.32022MR94i:32050
  17. [Ho] G. HOCHSCHILD, The Structure of Lie Groups Holden-Day, 1965. Zbl0131.02702MR34 #7696
  18. [K] Y. KANNAI, Off diagonal short time asymptotics for fundamental solutions of diffusion equations (Communication in P.D.E., Vol. 2, 1977, pp. 781-830). Zbl0381.35039MR58 #29247
  19. [L1] G. LEBEAU, Contrôle analytique I : estimations a priori (Duke Math. J., Vol. 68, 1992, pp. 1-30). Zbl0780.93053MR93i:93019
  20. [L2] G. LEBEAU, Deuxième microlocalisation sur les sous-variétés isotropes (Annales de l'Institut Fourier, Vol. 35, 1985, pp. 145-217). Zbl0539.58038MR87h:58205
  21. [Le] E. LEICHTNAM, Le problème de Cauchy ramifié linéaire pour des données à singularités algébriques (Mémoire de la SMF n° 53, 1993). Zbl0789.35009MR94j:35003a
  22. [L-S] L. LEMPERT and R. SZÖKE, Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds (Math. Ann., Vol. 290, 1991, pp. 689-712). Zbl0752.32008MR92m:32022
  23. [Sj] SJÖSTRAND, Singularités analytiques microlocales (Astérisque 95, 1982). Zbl0524.35007MR84m:58151
  24. [W] J. WOLF, Spaces of Constant Curvature, 2nd ed. Publish or Perish 1972. Zbl0281.53034MR49 #7957

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.