Adapted complex structures and Riemannian homogeneous spaces

Róbert Szőke

Annales Polonici Mathematici (1998)

  • Volume: 70, Issue: 1, page 215-220
  • ISSN: 0066-2216

Abstract

top
We prove that every compact, normal Riemannian homogeneous manifold admits an adapted complex structure on its entire tangent bundle.

How to cite

top

Róbert Szőke. "Adapted complex structures and Riemannian homogeneous spaces." Annales Polonici Mathematici 70.1 (1998): 215-220. <http://eudml.org/doc/262676>.

@article{RóbertSzőke1998,
abstract = {We prove that every compact, normal Riemannian homogeneous manifold admits an adapted complex structure on its entire tangent bundle.},
author = {Róbert Szőke},
journal = {Annales Polonici Mathematici},
keywords = {adapted complex structures; Riemannian homogeneous spaces; homogeneous manifold; adapted complex structure},
language = {eng},
number = {1},
pages = {215-220},
title = {Adapted complex structures and Riemannian homogeneous spaces},
url = {http://eudml.org/doc/262676},
volume = {70},
year = {1998},
}

TY - JOUR
AU - Róbert Szőke
TI - Adapted complex structures and Riemannian homogeneous spaces
JO - Annales Polonici Mathematici
PY - 1998
VL - 70
IS - 1
SP - 215
EP - 220
AB - We prove that every compact, normal Riemannian homogeneous manifold admits an adapted complex structure on its entire tangent bundle.
LA - eng
KW - adapted complex structures; Riemannian homogeneous spaces; homogeneous manifold; adapted complex structure
UR - http://eudml.org/doc/262676
ER -

References

top
  1. [B-D] T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Springer, New York, 1985. Zbl0581.22009
  2. [Be] A. L. Besse, Einstein Manifolds, Springer, 1987. 
  3. [Bu] D. Burns, On the uniqueness and characterization of Grauert tubes, in: Complex Analysis and Geometry, V. Ancona, E. Ballico and A. Silva (eds.), Marcel Dekker, 1996, 119-133. Zbl0921.32006
  4. [G-S] V. Guillemin and M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation I, J. Differential Geom. 34 (1991), 561-570. Zbl0746.32005
  5. [Ka] S. J. Kan, On the rigidity of non-positively curved Grauert tubes, preprint, 1996. 
  6. [Ka2] S. J. Kan, The asymptotic expansion of a CR invariant and Grauert tubes, Math. Ann. 304, (1996), 63-92. Zbl0848.32004
  7. L. Lempert and R. Szőke, Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds, Math. Ann. 291 (1991), 689-712. Zbl0752.32008
  8. [Ma] Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J. 16 (1960), 205-218. Zbl0094.28201
  9. [M] G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. 4 (1955), 31-54. Zbl0064.25901
  10. [Sz] R. Szőke, Complex structures on the tangent bundle of Riemannian manifolds, Math. Ann. 291 (1991), 409-428. Zbl0749.53021
  11. [Sz2] R. Szőke, Automorphisms of certain Stein manifolds, Math. Z. 219 (1995), 357-385. Zbl0829.32009
  12. [Sz3] R. Szőke, Adapted complex structures on tangent bundles of Riemannian manifolds, in: Complex Analysis and Generalized Functions (Varna, 1991), I. Dimovski and V. Hristov (eds.), Publ. House Bulgarian Acad. Sci., Sofia, 1993, 304-314. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.