Strengthening upper bound for the number of critical levels of nonlinear functionals

Svatopluk Fučík; Jindřich Nečas; Jiří Souček; Vladimír Souček

Commentationes Mathematicae Universitatis Carolinae (1972)

  • Volume: 013, Issue: 2, page 297-310
  • ISSN: 0010-2628

How to cite

top

Fučík, Svatopluk, et al. "Strengthening upper bound for the number of critical levels of nonlinear functionals." Commentationes Mathematicae Universitatis Carolinae 013.2 (1972): 297-310. <http://eudml.org/doc/16495>.

@article{Fučík1972,
author = {Fučík, Svatopluk, Nečas, Jindřich, Souček, Jiří, Souček, Vladimír},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {2},
pages = {297-310},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Strengthening upper bound for the number of critical levels of nonlinear functionals},
url = {http://eudml.org/doc/16495},
volume = {013},
year = {1972},
}

TY - JOUR
AU - Fučík, Svatopluk
AU - Nečas, Jindřich
AU - Souček, Jiří
AU - Souček, Vladimír
TI - Strengthening upper bound for the number of critical levels of nonlinear functionals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1972
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 013
IS - 2
SP - 297
EP - 310
LA - eng
UR - http://eudml.org/doc/16495
ER -

References

top
  1. F. E. BROWDER, Infinite dimensional manifolds and nonlinear eigenvalue pгoblems, Annals of Math. 82 (1965), 459-477. (1965) MR0203249
  2. E. S. CITLANADZE, Existence theorems for minimax points in Danach spaces, (Russian), Trudy Mosk. Mat. Obšč. 2 (1953), 235-274. (1953) MR0055574
  3. S. FUČÍK J. NEČAS, Ljusternik-Schnirelmann theorem and nonlinear eigenvalue problems, Math. Nachr. (to appear). MR0333863
  4. S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK, Upper bound for the number of eigenvalues for nonlineaг operators, Ann. Scuola Norm. Sup. Pisa (to appear). MR0305168
  5. S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK, Upper bound for the number of critical levels for nonlinear operators in Banach spaces of the type of second order nonlinear partial differential operators, Journ. Funct. Anal. (to appeaг). 
  6. J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Academia, Pгaha 1967. (1967) 
  7. M. M. VAJNBERG, Variational methods for the study of non-lineaг operators, Holden-Day, 1964. (1964) 
  8. E. HILLE R. S. PHILIPS, Functional analysis and semigroups, Providence, 1957. (1957) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.