The product of relatively regular operators
Commentationes Mathematicae Universitatis Carolinae (1975)
- Volume: 016, Issue: 3, page 531-539
- ISSN: 0010-2628
Access Full Article
topHow to cite
topReferences
top- F. V. ATKINSON, On relatively regular operators, Acta Sci. Math. Szeged 15 (1953), 38-56. (1953) Zbl0052.12502MR0056835
- R. BOULDIN, The product of operators with closed range, Tohoku Math. J. 25 (1973), 359-363. (1973) Zbl0269.47002MR0326424
- R. BOULDIN, The pseudo-inverse of a product, SIAM J. Appl. Math. 24 (1973), 489-495. (1973) Zbl0236.47007MR0317088
- S. R. CARADUS, An equational approach to products of relatively regular operators, (submitted to Aequationes Math.). Zbl0348.47010MR0454696
- S. R. CARADUS, Operator theory of the pseudo-inverse, Queen's Papers in Pure and Applied Mathematics, No. 38, Quen's University, Kingston, Ont., 1974. (1974) Zbl0286.47001
- C. W. GROETSCH, Representations of the generalized inverse, J. Math. Anal. Appl. 49 (1975), 154-157. (1975) Zbl0295.47012MR0361877
- J. J. KOLIHA, Convergent and stable operators and their generalization, J. Math. Anal. Appl. 43 (1973), 778-794. (1973) Zbl0264.47016MR0324447
- J. J. KOLIHA, Convergence of an operator series, Research Report No. 19, Department of Mathematics, University of Melbourne, 1974. (19,)
- M. Z. NASHED, Generalized inverses, normal solvability and iteration for singular operator equations, in Nonlinear Functional Analysis and Applications, L. B. Rall, Ed., Academic Press, New York, 1971, pp. 311-359. (1971) Zbl0236.41015MR0275246
- A. E. TAYLOR, Introduction to Functional Analysis, J. Wiley, New York, 1958. (1958) Zbl0081.10202MR0098966