Remarks on the non self-adjoint Schrödinger operator

Donato Fortunato

Commentationes Mathematicae Universitatis Carolinae (1979)

  • Volume: 020, Issue: 1, page 79-93
  • ISSN: 0010-2628

How to cite

top

Fortunato, Donato. "Remarks on the non self-adjoint Schrödinger operator." Commentationes Mathematicae Universitatis Carolinae 020.1 (1979): 79-93. <http://eudml.org/doc/16947>.

@article{Fortunato1979,
author = {Fortunato, Donato},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Schrödinger OPERATORS},
language = {eng},
number = {1},
pages = {79-93},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on the non self-adjoint Schrödinger operator},
url = {http://eudml.org/doc/16947},
volume = {020},
year = {1979},
}

TY - JOUR
AU - Fortunato, Donato
TI - Remarks on the non self-adjoint Schrödinger operator
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1979
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 020
IS - 1
SP - 79
EP - 93
LA - eng
KW - Schrödinger OPERATORS
UR - http://eudml.org/doc/16947
ER -

References

top
  1. V. BENCI D. FORTUNATO, Discreteness conditions of the spectrum of Schrödinger operators, J. Math. Anal. and Appl. 64 (1978), 695-700. (1978) MR0481616
  2. F. E. BROWDER, On the spectral theory of elliptic differential operators, Mat. Annalen 142 (1961), 22-130. (1961) Zbl0104.07502MR0209909
  3. I. M. GLAZMAN, Direct methods of the qualitative spectral analysis of singular differential operators, Israel Program of Translations, Jerusalem (1965). (1965) MR0190800
  4. T. KATO, Perturbation theory for linear operators, Springer Verlag, New York (1966). (1966) Zbl0148.12601MR0203473
  5. T. KATO, Schrödinger operators with singular potentials, Israel J. Math. 13 (1973), 135-148. (1973) Zbl0246.35025MR0333833
  6. V. B. LIDSKII, Conditions for the complete continuity of the resolvent of a nonself-adjoint differential operators, Dokl. Akad. Nauk SSSR 113 (1957), 28-31. (1957) MR0091385
  7. A. M. MOLCHANOV, The conditions for the discreteness of the spectrum of self-adjoint second-order differential equations, Trudy Moskov. Mat. Obšč. 2 (1953), 169-300. (1953) MR0057422
  8. M. A. NAIMARK, The spectrum of singular non self-adjoint second order differential operators, Dokl. Akad. Nauk SSSR (1952), 41-44. (1952) MR0051402
  9. B. S. PAVLOV, The non self-adjoint Schrödinger operator, Topics Math. Phys. 1 (1967), 83-113. (1967) 
  10. M. REED B. SIMON, Methods of modern Mathematical Physics, I, Academic Press New York (1972). (1972) MR0751959
  11. M. SCHECHTER, Principles of functional analysis, Academic Press, New York (1971). (1971) Zbl0211.14501MR0445263
  12. T. KATO, On some Schrödinger operators with a singular complex potential, Ann. Sc. Norm. Sup. Pisa 5 (1978), 105-114. (1978) Zbl0376.47021MR0492961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.