Valuations of structures
Commentationes Mathematicae Universitatis Carolinae (1979)
- Volume: 020, Issue: 4, page 681-695
- ISSN: 0010-2628
Access Full Article
topHow to cite
topMlček, Josef. "Valuations of structures." Commentationes Mathematicae Universitatis Carolinae 020.4 (1979): 681-695. <http://eudml.org/doc/17002>.
@article{Mlček1979,
author = {Mlček, Josef},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {valuations of structures; alternative set theory; metrization},
language = {eng},
number = {4},
pages = {681-695},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Valuations of structures},
url = {http://eudml.org/doc/17002},
volume = {020},
year = {1979},
}
TY - JOUR
AU - Mlček, Josef
TI - Valuations of structures
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1979
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 020
IS - 4
SP - 681
EP - 695
LA - eng
KW - valuations of structures; alternative set theory; metrization
UR - http://eudml.org/doc/17002
ER -
References
top- J. L. KELLEY, General Topology, Van Norstad Comp., Inc., 1961. (1961) MR0070144
- J. MLČEK, Approximation of -classes and -classes, Comment. Math. Univ. Carolinae 20 (1979), 669-679. (1979) MR0555182
- A. SOCHOR P. VOPĚNKA, Revealments, to appear in Comment. Math. Univ. Carolinae 21 (1980). (1980) MR0566243
- P. VOPĚNKA, Mathematics in the alternative set theory, Teubner-Texte, Leipzig 1979. (1979) MR0581368
Citations in EuDML Documents
top- Josef Mlček, Monotonic valuations and valuations of triads of higher types
- Jaroslav Guričan, Pavol Zlatoš, Archimedean and geodetical biequivalences
- Josef Mlček, Monotonic valuations of -triads and evaluations of ideals
- Josef Mlček, Valuations of lines
- Jaroslav Guričan, Pavol Zlatoš, Biequivalences and topology in the alternative set theory
- Miroslav Šmíd, Pavol Zlatoš, Biequivalence vector spaces in the alternative set theory
- J. Náter, P. Pulmann, Pavol Zlatoš, Dimensional compactness in biequivalence vector spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.