On the existence of solution of the equation L ( x ) = N ( x ) and a generalized coincidence degree theory. II.

Enayet U, Tarafdar

Commentationes Mathematicae Universitatis Carolinae (1981)

  • Volume: 022, Issue: 1, page 37-58
  • ISSN: 0010-2628

How to cite

top

Tarafdar, Enayet U,. "On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II.." Commentationes Mathematicae Universitatis Carolinae 022.1 (1981): 37-58. <http://eudml.org/doc/17086>.

@article{Tarafdar1981,
author = {Tarafdar, Enayet U,},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Leray-Schauder degree; admissible generalized Fredholm mapping; generalized coincidence degree},
language = {eng},
number = {1},
pages = {37-58},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II.},
url = {http://eudml.org/doc/17086},
volume = {022},
year = {1981},
}

TY - JOUR
AU - Tarafdar, Enayet U,
TI - On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II.
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1981
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 022
IS - 1
SP - 37
EP - 58
LA - eng
KW - Leray-Schauder degree; admissible generalized Fredholm mapping; generalized coincidence degree
UR - http://eudml.org/doc/17086
ER -

References

top
  1. BROWDER F. E., PETRYSHYN W. V., Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces, J. Functional Anal. 39 (1968), 217-245. (1968) MR0244812
  2. BROWDER F. E., PETRYSHYN W. V., The topological degree and the Galerkin approximations for non-compact operator in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 641-646. (1968) MR0229100
  3. FITZPATRICK P. M., A generalized degree for uniform limits of A -proper mappings, J. Math. Anal. Appl. 35 (1971), 536-552. (1971) Zbl0215.21304MR0281069
  4. GAINES R. E., MAWHIN J. L., Coincidence degree and non-linear differential equations, Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.) Springer-Verlag (1977). (1977) MR0637067
  5. GOLDENSTEIN L. S., GOHBERG I. Ts, MARKUS A. S., Investigation of some properties of bounded linear opeгators in connection with their q -norm, Uch. Zap. Kishinev, Gos. Univ. 29 (1957), 29-36. (1957) 
  6. HETZER G., Some remarks on φ + opeгators and on the coincidence degree for Fгedholm equation with non-compact nonlineaг perturbation, Ann. Soc. Sci. Bruxelles Ser. I 89 (1975), 497-508. (1975) MR0385653
  7. KRASNOSEL'SKII M. A., Some problems of nonlinear analysis, Amer. Math. Soc. Transl. (2) 10 (1958), 345-409. (1958) MR0094731
  8. KURATOWSKI C., Sur les espaces complets, Fund. Math. 15 (1930), 301-309. (1930) 
  9. MAWHIN J., Equivalence Theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610-636. (1972) Zbl0244.47049MR0328703
  10. NUSSBAUM R. D., The fixed point index for local condensing maps, An. Mat. pura Appl. (4) 89 (1971), 217-258. (1971) Zbl0226.47031MR0312341
  11. NUSSBAUM R. D., Degree theory for local condensing maps, J. Math. Anal. Appl. 37 (1972), 741-766. (1972) Zbl0232.47062MR0306986
  12. TARAFDAR E., On the existence of solution of the equation L ( x ) = N ( x ) and a generalized coincidence degree theory I, Comment. Math. Univ. Carolinae 21 (1980), 805-823. (1980) Zbl0463.47046MR0597769
  13. VAINIKKO G. M., SADOVSKII B. N., On the rotation of condensing vector fields, (Russian), Probl. Matem., Analiza Slozhn. Sist. No. 2, Voronezh (1968), 84-88. (1968) MR0293469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.