Entropy regularization of the transonic potential flow problem

Miloslav Feistauer; Jan Mandel; Jindřich Nečas

Commentationes Mathematicae Universitatis Carolinae (1984)

  • Volume: 025, Issue: 3, page 431-443
  • ISSN: 0010-2628

How to cite

top

Feistauer, Miloslav, Mandel, Jan, and Nečas, Jindřich. "Entropy regularization of the transonic potential flow problem." Commentationes Mathematicae Universitatis Carolinae 025.3 (1984): 431-443. <http://eudml.org/doc/17335>.

@article{Feistauer1984,
author = {Feistauer, Miloslav, Mandel, Jan, Nečas, Jindřich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {entropy regularization; transonic potential flow problem; weak solution; variational inequality},
language = {eng},
number = {3},
pages = {431-443},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Entropy regularization of the transonic potential flow problem},
url = {http://eudml.org/doc/17335},
volume = {025},
year = {1984},
}

TY - JOUR
AU - Feistauer, Miloslav
AU - Mandel, Jan
AU - Nečas, Jindřich
TI - Entropy regularization of the transonic potential flow problem
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1984
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 025
IS - 3
SP - 431
EP - 443
LA - eng
KW - entropy regularization; transonic potential flow problem; weak solution; variational inequality
UR - http://eudml.org/doc/17335
ER -

References

top
  1. S. AGMON A. DOUGLIS L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II, Comm. Pure Appl. Math. 12 (1959), 623-727, 17 (1964), 35-92. (1959) MR0162050
  2. P. M. ANSELONE R. ANSORGE, Compactness principles in nonlinear operator approximation theory, Number. Funct. Anal. Optimiz. 1 (1979), 589-618. (1979) MR0552242
  3. H. BREZIS, Reraarque sur l'article précedent de F. Murat, J. Math. pures et appl. 60 (1981), 321-322. (1981) 
  4. M. FEISTAUER J. NEČAS, On the solvability of transonic potential flow problems, Z. für Analysis und ihre Anwendungen (to appear). MR0807140
  5. S. FUČÍK A. KRATOCHVÍL J. NEČAS, Kačanov-Galerkin method, Comment. Math. Univ. Carolinae 14 (1973), 651-659. (1973) MR0365300
  6. R. GLOWINSKI, Lectures on Numerical Methods for Nonlinear Variational Problems, Springer-Verlag Heidelberg 1980. (1980) MR0597520
  7. R. GLOWINSKI O. PIRONNEAU, On the computation of transonic flows, In: H. Fujita (Ed.): Functlonal Analysis and Numerical Analysis, Japan Society for the Promotion of Science, 1978. (1978) 
  8. J. MANDEL, On an iterative method for nonlinear variational inequalities, Numer. Funct. Anal. Optimiz. (Submitted). Zbl0631.65070MR0855440
  9. N. G. MEYERS, An L p estimate for the gradient of solutions of second order elliptic divergence equations, Ann. S.N.S. Pisa 17 (1963), 189-206. (1963) MR0159110
  10. P. MURAT, L’injection du cône positif de H - 1 dans W - 1 , q est compacte pour tout q < 2 , J. Math. pures et appl. 60 (1981), 309-321. (1981) 
  11. J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Academia, Praha 1967. (1967) MR0227584
  12. J. NEČAS I. HLAVÁČEK, Solution of Signorini's contact problem in the deformation theory of plasticity by secant modulus method, Apl. Mat. 28 (1983), 199-214. (1983) MR0701739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.