How to define reasonably weighted Sobolev spaces
Commentationes Mathematicae Universitatis Carolinae (1984)
- Volume: 025, Issue: 3, page 537-554
- ISSN: 0010-2628
Access Full Article
topHow to cite
topKufner, Alois, and Opic, Bohumír. "How to define reasonably weighted Sobolev spaces." Commentationes Mathematicae Universitatis Carolinae 025.3 (1984): 537-554. <http://eudml.org/doc/17341>.
@article{Kufner1984,
author = {Kufner, Alois, Opic, Bohumír},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Sobolev weight space},
language = {eng},
number = {3},
pages = {537-554},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {How to define reasonably weighted Sobolev spaces},
url = {http://eudml.org/doc/17341},
volume = {025},
year = {1984},
}
TY - JOUR
AU - Kufner, Alois
AU - Opic, Bohumír
TI - How to define reasonably weighted Sobolev spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1984
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 025
IS - 3
SP - 537
EP - 554
LA - eng
KW - Sobolev weight space
UR - http://eudml.org/doc/17341
ER -
References
top- DUNFORD N., SCHWARTZ J. T., Linear Operators. Part I : General Theory, Interscience Publishers, New York, London 1958. (1958) MR1009162
- KUFNER A., JOHN O., FUČÍK S., Function spaces, Academia, Praha & Noordhoff International Publishing, Leyden 1977. (1977) MR0482102
- MUCKENHOUPT B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1977), 207-226. (1977) MR0293384
Citations in EuDML Documents
top- Bohumír Opic, Compact imbedding of weighted Sobolev space defined on an unbounded domain. I.
- Pavel Drábek, Alois Kufner, Compact imbeddings in weighted Sobolev spaces and nonlinear boundary value problems
- Alois Kufner, Bohumír Opic, The Dirichlet problem and weighted spaces. II.
- Petr Gurka, Bohumír Opic, Continuous and compact imbeddings of weighted Sobolev spaces. I
- Aldo Goia, Ernesto Salinelli, Optimal nonlinear transformations of random variables
- Tero Kilpeläinen, Smooth approximation in weighted Sobolev spaces
- Bohumír Opic, Necessary and sufficient conditions for imbeddings in weighted Sobolev spaces
- Laurent Hoeltgen, Andreas Kleefeld, Isaac Harris, Michael Breuss, Theoretical foundation of the weighted Laplace inpainting problem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.