Theoretical foundation of the weighted Laplace inpainting problem

Laurent Hoeltgen; Andreas Kleefeld; Isaac Harris; Michael Breuss

Applications of Mathematics (2019)

  • Volume: 64, Issue: 3, page 281-300
  • ISSN: 0862-7940

Abstract

top
Laplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers the corresponding weak formulation and aims at using the Theorem of Lax-Milgram to assert the existence of a solution. To this end we have to resort to weighted Sobolev spaces. Our analysis shows that solutions do not exist unconditionally. The weights need some regularity and must fulfil certain growth conditions. The results from this work complement findings which were previously only available for a discrete setup.

How to cite

top

Hoeltgen, Laurent, et al. "Theoretical foundation of the weighted Laplace inpainting problem." Applications of Mathematics 64.3 (2019): 281-300. <http://eudml.org/doc/294678>.

@article{Hoeltgen2019,
abstract = {Laplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers the corresponding weak formulation and aims at using the Theorem of Lax-Milgram to assert the existence of a solution. To this end we have to resort to weighted Sobolev spaces. Our analysis shows that solutions do not exist unconditionally. The weights need some regularity and must fulfil certain growth conditions. The results from this work complement findings which were previously only available for a discrete setup.},
author = {Hoeltgen, Laurent, Kleefeld, Andreas, Harris, Isaac, Breuss, Michael},
journal = {Applications of Mathematics},
keywords = {image inpainting; image reconstruction; Laplace equation; Laplace interpolation; mixed boundary condition; partial differential equation; weighted Sobolev space},
language = {eng},
number = {3},
pages = {281-300},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Theoretical foundation of the weighted Laplace inpainting problem},
url = {http://eudml.org/doc/294678},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Hoeltgen, Laurent
AU - Kleefeld, Andreas
AU - Harris, Isaac
AU - Breuss, Michael
TI - Theoretical foundation of the weighted Laplace inpainting problem
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 281
EP - 300
AB - Laplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers the corresponding weak formulation and aims at using the Theorem of Lax-Milgram to assert the existence of a solution. To this end we have to resort to weighted Sobolev spaces. Our analysis shows that solutions do not exist unconditionally. The weights need some regularity and must fulfil certain growth conditions. The results from this work complement findings which were previously only available for a discrete setup.
LA - eng
KW - image inpainting; image reconstruction; Laplace equation; Laplace interpolation; mixed boundary condition; partial differential equation; weighted Sobolev space
UR - http://eudml.org/doc/294678
ER -

References

top
  1. Atkinson, K., Han, W., 10.1007/978-1-4419-0458-4, Texts in Applied Mathematics 39, Springer, Berlin (2009). (2009) Zbl1181.47078MR2511061DOI10.1007/978-1-4419-0458-4
  2. Azzam, A., Kreyszig, E., 10.1137/0513018, SIAM J. Math.Anal. 13 (1982), 254-262. (1982) Zbl0485.35041MR0647124DOI10.1137/0513018
  3. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J., 10.1137/080716396, SIAM J. Appl. Math. 70 (2009), 333-352. (2009) Zbl1190.94006MR2521220DOI10.1137/080716396
  4. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C., 10.1145/344779.344972, Proc. 27th Annual Conf. Computer Graphics and Interactive Techniques ACM Press/Addison-Wesley Publishing Company, New York 417-424 (2000). (2000) DOI10.1145/344779.344972
  5. Bloor, M. I. G., Wilson, M. J., 10.1016/0010-4485(89)90071-7, Comput.-Aided Des. 21 (1989), 165-171. (1989) Zbl0669.65006DOI10.1016/0010-4485(89)90071-7
  6. Bredies, K., A variational weak weighted derivative: Sobolev spaces and degenerate elliptic equations, Available at https://imsc.uni-graz.at/bredies/publications_de.html (2008). (2008) 
  7. Brown, R., 10.1080/03605309408821052, Commun. Partial Differ. Equations 19 (1994), 1217-1233. (1994) Zbl0831.35043MR1284808DOI10.1080/03605309408821052
  8. Cantrell, R. S., Cosner, C., 10.1002/0470871296, Wiley Series in Mathematical and Computational Biology, Wiley, Chichester (2003). (2003) Zbl1059.92051MR2191264DOI10.1002/0470871296
  9. Caselles, V., Morel, J.-M., Sbert, C., 10.1109/83.661188, IEEE Trans. Image Process. 7 (1998), 376-386. (1998) Zbl0993.94504MR1669524DOI10.1109/83.661188
  10. Chabrowski, J., 10.1007/BFb0095750, Lecture Notes in Mathematics 1482, Springer, Berlin (1991). (1991) Zbl0734.35024MR1165533DOI10.1007/BFb0095750
  11. Chan, T. F., Kang, S. H., 10.1007/s10851-006-6865-7, J. Math. Imaging Vis. 26 (2006), 85-103. (2006) MR2283872DOI10.1007/s10851-006-6865-7
  12. Chan, T. F., Shen, J., 10.1137/S0036139900368844, SIAM J. Appl. Math. 62 (2002), 1019-1043. (2002) Zbl1050.68157MR1897733DOI10.1137/S0036139900368844
  13. Crain, I. K., 10.1016/0016-7142(70)90021-9, Geoexploration 8 (1970), 71-86. (1970) DOI10.1016/0016-7142(70)90021-9
  14. Maso, G. Dal, Mosco, U., 10.1007/BF01442645, Appl. Math. Optimization 15 (1987), 15-63. (1987) Zbl0644.35033MR0866165DOI10.1007/BF01442645
  15. Edmunds, D. E., Opic, B., 10.1112/jlms/s2-47.1.79, J. Lon. Math. Soc., II. Ser. 47 (1993), 79-96. (1993) Zbl0797.46027MR1200980DOI10.1112/jlms/s2-47.1.79
  16. Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159, Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
  17. Fichera, G., Analisi esistenziale per le soluzioni dei problemi al contorno misti, relativi all'equazione e ai sistemi di equazioni del secondo ordine di tipo ellittico, autoaggiunti, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 1 (1949), Italian 75-100. (1949) Zbl0035.18603MR0035370
  18. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P., 10.1007/11567646, N. Paragios et al. Variational, Geometric, and Level Set Methods in Computer Vision Lecture Notes in Computer Science 3752, Springer, Berlin (2005), 37-48. (2005) Zbl1159.68589MR2232529DOI10.1007/11567646
  19. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P., 10.1007/s10851-008-0087-0, J. Math. Imaging Vis. 31 (2008), 255-269. (2008) MR2407524DOI10.1007/s10851-008-0087-0
  20. Gol'dshtein, V., Ukhlov, A., 10.1090/S0002-9947-09-04615-7, Trans. Am. Math. Soc. 361 (2009), 3829-3850. (2009) Zbl1180.46022MR2491902DOI10.1090/S0002-9947-09-04615-7
  21. Guillemot, C., Meur, O. Le, 10.1109/msp.2013.2273004, IEEE Signal Processing Magazine 31 (2014), 127-144. (2014) DOI10.1109/msp.2013.2273004
  22. Hoeltgen, L., Optimal interpolation data for image reconstructions, Ph.D. Thesis, Saarland University, Saarbrücken (2014). (2014) 
  23. Hoeltgen, L., 10.1007/s40096-017-0207-3, Math. Sci., Springer 11 (2017), 73-77. (2017) Zbl06781216MR3612257DOI10.1007/s40096-017-0207-3
  24. Hoeltgen, L., Harris, I., Breuß, M., Kleefeld, A., 10.1007/978-3-319-58771-4_6, International Conference on Scale Space and Variational Methods in Computer Vision F. Lauze et al. Lecture Notes in Computer Science 10302, Springer, Cham (2017), 66-79. (2017) MR3864739DOI10.1007/978-3-319-58771-4_6
  25. L. Hoeltgen, M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, S. Setzer, D. Johannsen, F. Neumann, B. Doerr, 10.1515/9783110430394, Variational Methods, In Imaging and Geometric Control M. Bergounioux et al. Radon Series on Computational and Applied Mathematics 18, De Gruyter, Berlin (2017), 35-83. (2017) Zbl06984290MR3618249DOI10.1515/9783110430394
  26. Hoeltgen, L., Setzer, S., Weickert, J., 10.1007/978-3-642-40395-8_12, Energy Minimization Methods in Computer Vision and Pattern Recognition A. Heyden et al. Lecture Notes in Computer Science 8081, Springer, Berlin (2013), 151-164. (2013) DOI10.1007/978-3-642-40395-8_12
  27. Hoeltgen, L., Weickert, J., 10.1007/978-3-319-14612-6_7, X.-C. Tai et al. Energy Minimization Methods in Computer Vision and Pattern Recognition Lecture Notes in Computer Science 8932, Springer, Cham (2015), 85-98. (2015) DOI10.1007/978-3-319-14612-6_7
  28. Kufner, A., Weighted Sobolev Spaces, Teubner-Texte zur Mathematik 31, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980). (1980) Zbl0455.46034MR0664599
  29. Kufner, A., Opic, B., The Dirichlet problem and weighted spaces. I, Čas. Pěst. Mat. 108 (1983), 381-408. (1983) Zbl0589.35016MR0727537
  30. Kufner, A., Opic, B., How to define reasonably weighted Sobolev spaces, Commentat. Math. Univ. Carol. 25 (1984), 537-554. (1984) Zbl0557.46025MR0775568
  31. Kufner, A., Opic, B., Some remarks on the definition of weighted Sobolev spaces, Partial Differential Equations, 1983 ``Nauka'' Sibirsk. Otdel, Novosibirsk (1986), 119-126 Russian. (1986) MR0851604
  32. Kufner, A., Opic, B., The Dirichlet problem and weighted spaces. II, Čas. Pěstování Mat. 111 (1986), 242-253. (1986) Zbl0654.35039MR0853789
  33. Kufner, A., Sändig, A.-M., 10.1007/978-3-663-11385-0, Teubner-Texte zur Mathematik 100, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1987). (1987) Zbl0662.46034MR0926688DOI10.1007/978-3-663-11385-0
  34. Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S., 10.1016/j.patcog.2010.08.004, Pattern Recognition 44 (2011), 1859-1873. (2011) DOI10.1016/j.patcog.2010.08.004
  35. Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Johannsen, D., Neumann, F., Doerr, B., 10.1007/978-3-642-24785-9_3, Scale Space and Variational Methods in Computer Vision A. M. Bruckstein et al. Lecture Notes in Computer Science 6667, Springer, Berlin (2012), 26-37. (2012) MR3207755DOI10.1007/978-3-642-24785-9_3
  36. Martinet, B., Régularisation d'inéquations variationnelles par approximations successives, Rev. Franç. Inform. Rech. Opér. 4 (1970), 154-158 French. (1970) Zbl0215.21103MR0298899
  37. Masnou, S., Morel, J.-M., 10.1109/icip.1998.999016, Proceedings 1998 International Conference on Image Processing. ICIP98 IEEE (2002), 259-263. (2002) MR1888912DOI10.1109/icip.1998.999016
  38. Miranda, C., 10.1007/BF02410775, Ann. Mat. Pura Appl., IV. Ser. 39 (1955), 279-303 Italian. (1955) Zbl0066.34301MR0078561DOI10.1007/BF02410775
  39. Nochetto, R. H., Otárola, E., Salgado, A. J., 10.1007/s00211-015-0709-6, Numer. Math. 132 (2016), 85-130. (2016) Zbl1334.65030MR3439216DOI10.1007/s00211-015-0709-6
  40. Noma, A. A., Misulia, M. G., Programming topographic maps for automatic terrain model construction, Surveying and Mapping 19 (1959), 355-366. (1959) 
  41. Oleĭnik, O. A., Radkevič, E. V., 10.1007/978-1-4684-8965-1, American Mathematical Society, Providence (1973). (1973) Zbl0217.41502MR0457908DOI10.1007/978-1-4684-8965-1
  42. Opic, B., Kufner, A., Hardy-type Inequalities, Pitman Research Notes in Mathematics 219, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1990). (1990) Zbl0698.26007MR1069756
  43. Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J., 10.1016/j.image.2016.05.002, Signal Processing: Image Communication 46 (2016), 40-53. (2016) DOI10.1016/j.image.2016.05.002
  44. Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J., 10.1007/978-3-319-29451-3_6, Image and Video Technology T. Bräunl et al. Lecture Notes in Computer Science 9431, Springer, Cham (2016), 63-74. (2016) DOI10.1007/978-3-319-29451-3_6
  45. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., Numerical Recipes in C tt{++}. The Art of Scientific Computing, Cambridge University Press, Cambridge (2002). (2002) Zbl1078.65500MR1880993
  46. Sawyer, E. T., Wheeden, R. L., 10.1090/S0002-9947-09-04756-4, Trans. Am. Math. Soc. 362 (2010), 1869-1906. (2010) Zbl1191.35085MR2574880DOI10.1090/S0002-9947-09-04756-4
  47. Schmaltz, C., Weickert, J., Bruhn, A., 10.1007/978-3-642-03798-6_46, Pattern Recognition J. Denzler et al. Lecture Notes in Computer Science 5748, Springer, Berlin (2009), 452-461. (2009) DOI10.1007/978-3-642-03798-6_46
  48. Schönlieb, C.-B., 10.1017/CBO9780511734304, Cambridge Monographs on Applied and Computational Mathematics 29, Cambridge University Press, Cambridge (2015). (2015) Zbl1335.94002MR3558995DOI10.1017/CBO9780511734304
  49. Solomon, C., Breckon, T., 10.1002/9780470689776, Wiley-Blackwell, Chichester (2014). (2014) DOI10.1002/9780470689776
  50. Turesson, B. O., 10.1007/BFb0103908, Lecture Notes in Mathematics 1736, Springer, Berlin (2000). (2000) Zbl0949.31006MR1774162DOI10.1007/BFb0103908
  51. Višik, M. I., Grušin, V. V., 10.1070/sm1969v009n04abeh002055, Math. USSR, Sb. 9 (1969), 423-454. (1969) DOI10.1070/sm1969v009n04abeh002055
  52. Wang, W., Sun, J., Zheng, Z., 10.1007/s10483-006-0116-1, Appl. Math. Mech., Engl. Ed. 27 (2006), 125-132. (2006) Zbl1160.46315MR2213423DOI10.1007/s10483-006-0116-1
  53. Weber, A., The USC-SIPI image database, 2014. Available at http://sipi.usc.edu/database/, https://swmath.org/software/15845. 
  54. Zaremba, S., Sur un problème mixte relatif à l'équation de Laplace, Bulletin international de l'Académie des sciences de Cracovie (1910), 313-344 French. (1910) Zbl41.0854.12

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.