Theoretical foundation of the weighted Laplace inpainting problem
Laurent Hoeltgen; Andreas Kleefeld; Isaac Harris; Michael Breuss
Applications of Mathematics (2019)
- Volume: 64, Issue: 3, page 281-300
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHoeltgen, Laurent, et al. "Theoretical foundation of the weighted Laplace inpainting problem." Applications of Mathematics 64.3 (2019): 281-300. <http://eudml.org/doc/294678>.
@article{Hoeltgen2019,
abstract = {Laplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers the corresponding weak formulation and aims at using the Theorem of Lax-Milgram to assert the existence of a solution. To this end we have to resort to weighted Sobolev spaces. Our analysis shows that solutions do not exist unconditionally. The weights need some regularity and must fulfil certain growth conditions. The results from this work complement findings which were previously only available for a discrete setup.},
author = {Hoeltgen, Laurent, Kleefeld, Andreas, Harris, Isaac, Breuss, Michael},
journal = {Applications of Mathematics},
keywords = {image inpainting; image reconstruction; Laplace equation; Laplace interpolation; mixed boundary condition; partial differential equation; weighted Sobolev space},
language = {eng},
number = {3},
pages = {281-300},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Theoretical foundation of the weighted Laplace inpainting problem},
url = {http://eudml.org/doc/294678},
volume = {64},
year = {2019},
}
TY - JOUR
AU - Hoeltgen, Laurent
AU - Kleefeld, Andreas
AU - Harris, Isaac
AU - Breuss, Michael
TI - Theoretical foundation of the weighted Laplace inpainting problem
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 281
EP - 300
AB - Laplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers the corresponding weak formulation and aims at using the Theorem of Lax-Milgram to assert the existence of a solution. To this end we have to resort to weighted Sobolev spaces. Our analysis shows that solutions do not exist unconditionally. The weights need some regularity and must fulfil certain growth conditions. The results from this work complement findings which were previously only available for a discrete setup.
LA - eng
KW - image inpainting; image reconstruction; Laplace equation; Laplace interpolation; mixed boundary condition; partial differential equation; weighted Sobolev space
UR - http://eudml.org/doc/294678
ER -
References
top- Atkinson, K., Han, W., 10.1007/978-1-4419-0458-4, Texts in Applied Mathematics 39, Springer, Berlin (2009). (2009) Zbl1181.47078MR2511061DOI10.1007/978-1-4419-0458-4
- Azzam, A., Kreyszig, E., 10.1137/0513018, SIAM J. Math.Anal. 13 (1982), 254-262. (1982) Zbl0485.35041MR0647124DOI10.1137/0513018
- Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J., 10.1137/080716396, SIAM J. Appl. Math. 70 (2009), 333-352. (2009) Zbl1190.94006MR2521220DOI10.1137/080716396
- Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C., 10.1145/344779.344972, Proc. 27th Annual Conf. Computer Graphics and Interactive Techniques ACM Press/Addison-Wesley Publishing Company, New York 417-424 (2000). (2000) DOI10.1145/344779.344972
- Bloor, M. I. G., Wilson, M. J., 10.1016/0010-4485(89)90071-7, Comput.-Aided Des. 21 (1989), 165-171. (1989) Zbl0669.65006DOI10.1016/0010-4485(89)90071-7
- Bredies, K., A variational weak weighted derivative: Sobolev spaces and degenerate elliptic equations, Available at https://imsc.uni-graz.at/bredies/publications_de.html (2008). (2008)
- Brown, R., 10.1080/03605309408821052, Commun. Partial Differ. Equations 19 (1994), 1217-1233. (1994) Zbl0831.35043MR1284808DOI10.1080/03605309408821052
- Cantrell, R. S., Cosner, C., 10.1002/0470871296, Wiley Series in Mathematical and Computational Biology, Wiley, Chichester (2003). (2003) Zbl1059.92051MR2191264DOI10.1002/0470871296
- Caselles, V., Morel, J.-M., Sbert, C., 10.1109/83.661188, IEEE Trans. Image Process. 7 (1998), 376-386. (1998) Zbl0993.94504MR1669524DOI10.1109/83.661188
- Chabrowski, J., 10.1007/BFb0095750, Lecture Notes in Mathematics 1482, Springer, Berlin (1991). (1991) Zbl0734.35024MR1165533DOI10.1007/BFb0095750
- Chan, T. F., Kang, S. H., 10.1007/s10851-006-6865-7, J. Math. Imaging Vis. 26 (2006), 85-103. (2006) MR2283872DOI10.1007/s10851-006-6865-7
- Chan, T. F., Shen, J., 10.1137/S0036139900368844, SIAM J. Appl. Math. 62 (2002), 1019-1043. (2002) Zbl1050.68157MR1897733DOI10.1137/S0036139900368844
- Crain, I. K., 10.1016/0016-7142(70)90021-9, Geoexploration 8 (1970), 71-86. (1970) DOI10.1016/0016-7142(70)90021-9
- Maso, G. Dal, Mosco, U., 10.1007/BF01442645, Appl. Math. Optimization 15 (1987), 15-63. (1987) Zbl0644.35033MR0866165DOI10.1007/BF01442645
- Edmunds, D. E., Opic, B., 10.1112/jlms/s2-47.1.79, J. Lon. Math. Soc., II. Ser. 47 (1993), 79-96. (1993) Zbl0797.46027MR1200980DOI10.1112/jlms/s2-47.1.79
- Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159, Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
- Fichera, G., Analisi esistenziale per le soluzioni dei problemi al contorno misti, relativi all'equazione e ai sistemi di equazioni del secondo ordine di tipo ellittico, autoaggiunti, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 1 (1949), Italian 75-100. (1949) Zbl0035.18603MR0035370
- Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P., 10.1007/11567646, N. Paragios et al. Variational, Geometric, and Level Set Methods in Computer Vision Lecture Notes in Computer Science 3752, Springer, Berlin (2005), 37-48. (2005) Zbl1159.68589MR2232529DOI10.1007/11567646
- Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P., 10.1007/s10851-008-0087-0, J. Math. Imaging Vis. 31 (2008), 255-269. (2008) MR2407524DOI10.1007/s10851-008-0087-0
- Gol'dshtein, V., Ukhlov, A., 10.1090/S0002-9947-09-04615-7, Trans. Am. Math. Soc. 361 (2009), 3829-3850. (2009) Zbl1180.46022MR2491902DOI10.1090/S0002-9947-09-04615-7
- Guillemot, C., Meur, O. Le, 10.1109/msp.2013.2273004, IEEE Signal Processing Magazine 31 (2014), 127-144. (2014) DOI10.1109/msp.2013.2273004
- Hoeltgen, L., Optimal interpolation data for image reconstructions, Ph.D. Thesis, Saarland University, Saarbrücken (2014). (2014)
- Hoeltgen, L., 10.1007/s40096-017-0207-3, Math. Sci., Springer 11 (2017), 73-77. (2017) Zbl06781216MR3612257DOI10.1007/s40096-017-0207-3
- Hoeltgen, L., Harris, I., Breuß, M., Kleefeld, A., 10.1007/978-3-319-58771-4_6, International Conference on Scale Space and Variational Methods in Computer Vision F. Lauze et al. Lecture Notes in Computer Science 10302, Springer, Cham (2017), 66-79. (2017) MR3864739DOI10.1007/978-3-319-58771-4_6
- L. Hoeltgen, M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, S. Setzer, D. Johannsen, F. Neumann, B. Doerr, 10.1515/9783110430394, Variational Methods, In Imaging and Geometric Control M. Bergounioux et al. Radon Series on Computational and Applied Mathematics 18, De Gruyter, Berlin (2017), 35-83. (2017) Zbl06984290MR3618249DOI10.1515/9783110430394
- Hoeltgen, L., Setzer, S., Weickert, J., 10.1007/978-3-642-40395-8_12, Energy Minimization Methods in Computer Vision and Pattern Recognition A. Heyden et al. Lecture Notes in Computer Science 8081, Springer, Berlin (2013), 151-164. (2013) DOI10.1007/978-3-642-40395-8_12
- Hoeltgen, L., Weickert, J., 10.1007/978-3-319-14612-6_7, X.-C. Tai et al. Energy Minimization Methods in Computer Vision and Pattern Recognition Lecture Notes in Computer Science 8932, Springer, Cham (2015), 85-98. (2015) DOI10.1007/978-3-319-14612-6_7
- Kufner, A., Weighted Sobolev Spaces, Teubner-Texte zur Mathematik 31, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980). (1980) Zbl0455.46034MR0664599
- Kufner, A., Opic, B., The Dirichlet problem and weighted spaces. I, Čas. Pěst. Mat. 108 (1983), 381-408. (1983) Zbl0589.35016MR0727537
- Kufner, A., Opic, B., How to define reasonably weighted Sobolev spaces, Commentat. Math. Univ. Carol. 25 (1984), 537-554. (1984) Zbl0557.46025MR0775568
- Kufner, A., Opic, B., Some remarks on the definition of weighted Sobolev spaces, Partial Differential Equations, 1983 ``Nauka'' Sibirsk. Otdel, Novosibirsk (1986), 119-126 Russian. (1986) MR0851604
- Kufner, A., Opic, B., The Dirichlet problem and weighted spaces. II, Čas. Pěstování Mat. 111 (1986), 242-253. (1986) Zbl0654.35039MR0853789
- Kufner, A., Sändig, A.-M., 10.1007/978-3-663-11385-0, Teubner-Texte zur Mathematik 100, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1987). (1987) Zbl0662.46034MR0926688DOI10.1007/978-3-663-11385-0
- Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S., 10.1016/j.patcog.2010.08.004, Pattern Recognition 44 (2011), 1859-1873. (2011) DOI10.1016/j.patcog.2010.08.004
- Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Johannsen, D., Neumann, F., Doerr, B., 10.1007/978-3-642-24785-9_3, Scale Space and Variational Methods in Computer Vision A. M. Bruckstein et al. Lecture Notes in Computer Science 6667, Springer, Berlin (2012), 26-37. (2012) MR3207755DOI10.1007/978-3-642-24785-9_3
- Martinet, B., Régularisation d'inéquations variationnelles par approximations successives, Rev. Franç. Inform. Rech. Opér. 4 (1970), 154-158 French. (1970) Zbl0215.21103MR0298899
- Masnou, S., Morel, J.-M., 10.1109/icip.1998.999016, Proceedings 1998 International Conference on Image Processing. ICIP98 IEEE (2002), 259-263. (2002) MR1888912DOI10.1109/icip.1998.999016
- Miranda, C., 10.1007/BF02410775, Ann. Mat. Pura Appl., IV. Ser. 39 (1955), 279-303 Italian. (1955) Zbl0066.34301MR0078561DOI10.1007/BF02410775
- Nochetto, R. H., Otárola, E., Salgado, A. J., 10.1007/s00211-015-0709-6, Numer. Math. 132 (2016), 85-130. (2016) Zbl1334.65030MR3439216DOI10.1007/s00211-015-0709-6
- Noma, A. A., Misulia, M. G., Programming topographic maps for automatic terrain model construction, Surveying and Mapping 19 (1959), 355-366. (1959)
- Oleĭnik, O. A., Radkevič, E. V., 10.1007/978-1-4684-8965-1, American Mathematical Society, Providence (1973). (1973) Zbl0217.41502MR0457908DOI10.1007/978-1-4684-8965-1
- Opic, B., Kufner, A., Hardy-type Inequalities, Pitman Research Notes in Mathematics 219, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1990). (1990) Zbl0698.26007MR1069756
- Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J., 10.1016/j.image.2016.05.002, Signal Processing: Image Communication 46 (2016), 40-53. (2016) DOI10.1016/j.image.2016.05.002
- Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J., 10.1007/978-3-319-29451-3_6, Image and Video Technology T. Bräunl et al. Lecture Notes in Computer Science 9431, Springer, Cham (2016), 63-74. (2016) DOI10.1007/978-3-319-29451-3_6
- Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., Numerical Recipes in C tt{++}. The Art of Scientific Computing, Cambridge University Press, Cambridge (2002). (2002) Zbl1078.65500MR1880993
- Sawyer, E. T., Wheeden, R. L., 10.1090/S0002-9947-09-04756-4, Trans. Am. Math. Soc. 362 (2010), 1869-1906. (2010) Zbl1191.35085MR2574880DOI10.1090/S0002-9947-09-04756-4
- Schmaltz, C., Weickert, J., Bruhn, A., 10.1007/978-3-642-03798-6_46, Pattern Recognition J. Denzler et al. Lecture Notes in Computer Science 5748, Springer, Berlin (2009), 452-461. (2009) DOI10.1007/978-3-642-03798-6_46
- Schönlieb, C.-B., 10.1017/CBO9780511734304, Cambridge Monographs on Applied and Computational Mathematics 29, Cambridge University Press, Cambridge (2015). (2015) Zbl1335.94002MR3558995DOI10.1017/CBO9780511734304
- Solomon, C., Breckon, T., 10.1002/9780470689776, Wiley-Blackwell, Chichester (2014). (2014) DOI10.1002/9780470689776
- Turesson, B. O., 10.1007/BFb0103908, Lecture Notes in Mathematics 1736, Springer, Berlin (2000). (2000) Zbl0949.31006MR1774162DOI10.1007/BFb0103908
- Višik, M. I., Grušin, V. V., 10.1070/sm1969v009n04abeh002055, Math. USSR, Sb. 9 (1969), 423-454. (1969) DOI10.1070/sm1969v009n04abeh002055
- Wang, W., Sun, J., Zheng, Z., 10.1007/s10483-006-0116-1, Appl. Math. Mech., Engl. Ed. 27 (2006), 125-132. (2006) Zbl1160.46315MR2213423DOI10.1007/s10483-006-0116-1
- Weber, A., The USC-SIPI image database, 2014. Available at http://sipi.usc.edu/database/, https://swmath.org/software/15845.
- Zaremba, S., Sur un problème mixte relatif à l'équation de Laplace, Bulletin international de l'Académie des sciences de Cracovie (1910), 313-344 French. (1910) Zbl41.0854.12
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.