On bounded solutions of a linear differential equation with a nonlinear perturbation

Bogdan Rzepecki

Commentationes Mathematicae Universitatis Carolinae (1984)

  • Volume: 025, Issue: 4, page 635-645
  • ISSN: 0010-2628

How to cite

top

Rzepecki, Bogdan. "On bounded solutions of a linear differential equation with a nonlinear perturbation." Commentationes Mathematicae Universitatis Carolinae 025.4 (1984): 635-645. <http://eudml.org/doc/17346>.

@article{Rzepecki1984,
author = {Rzepecki, Bogdan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {function spaces; admissibility; Banach space; measure of noncompactness},
language = {eng},
number = {4},
pages = {635-645},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On bounded solutions of a linear differential equation with a nonlinear perturbation},
url = {http://eudml.org/doc/17346},
volume = {025},
year = {1984},
}

TY - JOUR
AU - Rzepecki, Bogdan
TI - On bounded solutions of a linear differential equation with a nonlinear perturbation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1984
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 025
IS - 4
SP - 635
EP - 645
LA - eng
KW - function spaces; admissibility; Banach space; measure of noncompactness
UR - http://eudml.org/doc/17346
ER -

References

top
  1. A. AMBROSETTI, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. (1967) Zbl0174.46001MR0222426
  2. M. BOUDOURIDES, On bounded solutions of nonlinear ordinary differential equations, Comment. Math. Univ. Carolinae 22 (1981), 15-26. (1981) Zbl0448.34038MR0609933
  3. J. DANEŠ, On densifying and related mappings and their application in nonlinear functional analysis, Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56. (1974) MR0361946
  4. K. DEIMLING, Ordinary differential equations in Banach spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. (1977) Zbl0361.34050MR0463601
  5. K. KURATOWSKI, Sur les espaces complete, Fund. Math. 15 (1930), 301-309. (1930) 
  6. R. MARTIN, Nonlinear operators and differential equations in Banach spaces, Wiley Publ., New York 1976. (1976) Zbl0333.47023MR0492671
  7. J. L. MASSERA J. J. SCHÄFFER, Linear differential equations and functional analysis, Ann. Math. 67 (1958), 517-573. (1958) MR0096985
  8. J. L. MASSERA J. J. SCHÄFFER, Linear differential equations and functional spaces, Academic Press, New York 1966. (1966) MR0212324
  9. B. RZEPECKI, Remarks on Schauder's fixed point principle and its applications, Bull. Acad. Polon. Sci., Sér. Math, 27 (1979), 473-480. (1979) Zbl0435.47057MR0560183
  10. B. N. SADOVSKII, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144. (1972) MR0428132
  11. S. SZUFLA, Some remarks on ordinary differential equations in Banach spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 795-800. (1968) Zbl0177.18902MR0239238
  12. S. SZUFLA, On the boundedness of solutions of non-linear differential equations in Banach spaces, Comment. Math, 21 (1979), 381-387. (1979) Zbl0432.34040MR0577527

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.