Fixed points, equilibria and maximal elements in linear topological spaces

Ghanshyam B. Mehta

Commentationes Mathematicae Universitatis Carolinae (1987)

  • Volume: 028, Issue: 2, page 377-385
  • ISSN: 0010-2628

How to cite

top

Mehta, Ghanshyam B.. "Fixed points, equilibria and maximal elements in linear topological spaces." Commentationes Mathematicae Universitatis Carolinae 028.2 (1987): 377-385. <http://eudml.org/doc/17551>.

@article{Mehta1987,
author = {Mehta, Ghanshyam B.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {multifunction; maximal element of a multifunction; equilibrium for a qualitative game},
language = {eng},
number = {2},
pages = {377-385},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fixed points, equilibria and maximal elements in linear topological spaces},
url = {http://eudml.org/doc/17551},
volume = {028},
year = {1987},
}

TY - JOUR
AU - Mehta, Ghanshyam B.
TI - Fixed points, equilibria and maximal elements in linear topological spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1987
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 028
IS - 2
SP - 377
EP - 385
LA - eng
KW - multifunction; maximal element of a multifunction; equilibrium for a qualitative game
UR - http://eudml.org/doc/17551
ER -

References

top
  1. BROWDER F., The fixed-point theory of multi-valued mappings in topological vector spaces, Mathematische Annalen 177 (1968), 283-301. (1968) Zbl0176.45204MR0229101
  2. FAN K., Some properties of convex sets related to fixed point theorems, Mathematische Annalen 266 (1984), 519-537. (1984) Zbl0515.47029MR0735533
  3. FLAM S., Abstract economies and games, Soochow Journal of Mathematics 5 (1979), 155-162. (1979) MR0572740
  4. GALE D., MAS-COLELL A., An equilibrium existence theorem for a general model without ordered preferences, Jou Journal of Mathematical Economics 2 (1975), 9-16. (1975) Zbl0324.90010MR0381651
  5. GRANAS A., BEN-EL-MECHAIEKH, DEGUIRE P., Fixed points and coincidences for setvalued maps of type Φ , Comptes Rendus Acad. Sc, Paris, October 1982, pp. 381-384. (1982) 
  6. HADŽIĆ O., A coincidence theorem in topological vector spaces, Bulletin of the Australian Mathematical Society 33 (1986), 373-382. (1986) MR0837483
  7. HIMMELBERG C. J., Fixed points for compact multifunctions, Journal of Mathematical Analysis and Applications 38 (1972), 205-207. (1972) MR0303368
  8. KELLEY J., General Topology, Van Nostrand, Princeton, 1955. (1955) Zbl0066.16604MR0070144
  9. MEHTA G., TARAFDAR E., Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed-point theorem of Tarafdar, 1985, Journal of Economic Theory (to appear). Zbl0646.47036MR0882999
  10. TARAFDAR E., On nonlinear variational inequalities, Proceedings of the American Mathematical Society 67 (1977), 95-98. (1977) Zbl0369.47029MR0467408
  11. TARAFDAR E., MEHTA G., On the existence of quasi-equilibrium in a competitive economy, International Journal of Science and Engineering 1 (1984), 1-12. (1984) 
  12. YANNELIS N., PRABHAKAR N., Existence of maximal elements and equilibria in linear topological spaces, Journal of Mathematical Economics 12 (1983), 233-245. (1983) Zbl0536.90019MR0743037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.