Some remarks and applications of an extension of a lemma of Ky Fan

Salvatore Sessa

Commentationes Mathematicae Universitatis Carolinae (1988)

  • Volume: 029, Issue: 3, page 567-575
  • ISSN: 0010-2628

How to cite

top

Sessa, Salvatore. "Some remarks and applications of an extension of a lemma of Ky Fan." Commentationes Mathematicae Universitatis Carolinae 029.3 (1988): 567-575. <http://eudml.org/doc/17669>.

@article{Sessa1988,
author = {Sessa, Salvatore},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {almost affine; onward set; fixed point theorem; coincidence theorems},
language = {eng},
number = {3},
pages = {567-575},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some remarks and applications of an extension of a lemma of Ky Fan},
url = {http://eudml.org/doc/17669},
volume = {029},
year = {1988},
}

TY - JOUR
AU - Sessa, Salvatore
TI - Some remarks and applications of an extension of a lemma of Ky Fan
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1988
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 029
IS - 3
SP - 567
EP - 575
LA - eng
KW - almost affine; onward set; fixed point theorem; coincidence theorems
UR - http://eudml.org/doc/17669
ER -

References

top
  1. H. F. BOHNENBLUST S. KARLIN, On a theorem of Ville in: "Contributions to the Theory of Games", (H. W. KUHN and A. W TUCKER Eds.), Vol. I, Ann. of Math. Studies 24, Princeton Univ. Press (1950), 155-160. (1950) MR0041415
  2. F. E. BROWDER, The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. (1968) MR0229101
  3. F. E. BROWDER, On a sharpened form of the Schauder fixed point theorem, Proc. Nat. Acad. Sci. USA 74 (1977), 4749-4751. (1977) Zbl0375.47028MR0463982
  4. F. E. BROWDER, Coincidence theorems, minimax theorems and variational inequalities, Contemporary Math., Vol. 26, Amer. Math. Soc, Providence, R.I., (1984) 67-80. (1984) Zbl0542.47046MR0737389
  5. K. FAN, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. USA 38 (1952), 121-126. (1952) Zbl0047.35103MR0047317
  6. K. FAN, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310. (1961) Zbl0093.36701MR0131268
  7. K. FAN, A minimax inequality and applications, in: "Inequalities", (O. SHISHA Ed.), Vol. III, Academic Press, New York, London (1972), 103-113. (1972) MR0341029
  8. K. FAN, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), 519-537. (1984) Zbl0515.47029MR0735533
  9. I. L. GLICKSBERG, A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. (1952) Zbl0163.38301MR0046638
  10. C. W. HA, Minimax and fixed point theorems, Math. Ann. 248 (1980), 73-77. (1980) Zbl0413.47042MR0569411
  11. O. HADŽIĆ, Fixed point theory in topological vector spaces, Univ. of Novi Sad, Inst, of Math., Novi Sad, Yugoslavia (1984). (1984) MR0789224
  12. B. R. HALPERN G. M. BERGMAN, A fixed point theorem for inward and outward maps, Trans. Amer. Math. Soc. 130 (1968), 353-358. (1968) MR0221345
  13. C. J. HIMMELBERG, Fixed points for compact multifunctions, J. Math. Anal. Appl. 38 (1972), 205-207. (1972) MR0303368
  14. B. KNASTER C. KURATOWSKI S. MAZURKIEWICZ, Ein Beweis des Fixpunktsatzes für n-dimensional Simplexe, Fund. Math. 14 (1929), 132-137. (1929) 
  15. H. KOMIYA, Coincidence theorem and saddle point theorem, Proc. Amer. Math. Soc. 96 (1986), 599-602. (1986) Zbl0657.47055MR0826487
  16. T. C. LIN, Convex sets, fixed points, variational and minimax inequalities, Bull. Austral. Math. Soc. 34 (1986), 107-117. (1986) Zbl0597.47038MR0847978
  17. G. MEHTA, Fixed points, equilibria and maximal elements in linear topological spaces, Comm. Math. Univ. Carolinae 28 (2) (1987), 377-385. (1987) Zbl0632.47041MR0904761
  18. S. PARK, Fixed point theorems on compact convex sets in topological vector spaces, MSRI Report Series, N. 25 (1986). Abstract 87T-47-211 of Amer. Math. Soc, Vol. 8, no. 6, p. 445. (1986) 
  19. J. B. PROLLA, Fixed point theorems for set-valued mappings and existence of best approximants, Numer.- Funct. Anal. Optimiz. 5 (4) (1982-83), 449-455. (1982) MR0703107
  20. E. TARAFDAR, On nonlinear variational inequalities, Proc. Amer. Math. Soc. 67 (1977), 95-98. (1977) Zbl0369.47029MR0467408
  21. E. TARAFDAR, Variational problems via a fixed point theorem, Indian J. Math. 28 (1986), 229-240. (1986) Zbl0641.49005MR0900728
  22. E. TARAFDAR, A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem, J. Math. Anal. Appl. 128 (1987), 475-479. (1987) Zbl0644.47050MR0917380

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.