Some new results on accretive multivalued operators

Libor Veselý

Commentationes Mathematicae Universitatis Carolinae (1989)

  • Volume: 030, Issue: 1, page 45-55
  • ISSN: 0010-2628

How to cite

top

Veselý, Libor. "Some new results on accretive multivalued operators." Commentationes Mathematicae Universitatis Carolinae 030.1 (1989): 45-55. <http://eudml.org/doc/17696>.

@article{Veselý1989,
author = {Veselý, Libor},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {geometry of Banach space; -porous sets; multivalued accretive operator; extension which is norm-weak upper semicontinuous; reflexive Fréchet smooth Banach space; weak closedness of values of any maximal accretive operator},
language = {eng},
number = {1},
pages = {45-55},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some new results on accretive multivalued operators},
url = {http://eudml.org/doc/17696},
volume = {030},
year = {1989},
}

TY - JOUR
AU - Veselý, Libor
TI - Some new results on accretive multivalued operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1989
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 030
IS - 1
SP - 45
EP - 55
LA - eng
KW - geometry of Banach space; -porous sets; multivalued accretive operator; extension which is norm-weak upper semicontinuous; reflexive Fréchet smooth Banach space; weak closedness of values of any maximal accretive operator
UR - http://eudml.org/doc/17696
ER -

References

top
  1. Cudia D. F., The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284-314. (1964) Zbl0123.30701MR0163143
  2. Giles J. R., On the characterization of Asplund spaces, J. Austral. Math. Soc. (Ser.A) 32 (1982), 134-144. (1982) Zbl0486.46019MR0643437
  3. Kato T., Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508- 520. (1967) Zbl0163.38303MR0226230
  4. Kenderov P. S., Monotone operators in Asplund spaces, C.R. Acad. Bulgare Sci 30 (1977), 963-964. (1977) Zbl0377.47036MR0463981
  5. Kolomý J., Maximal monotone and accretive multivalued mappings and structure of Banach spaces, Function spaces, Proc. Int. Conf. Poznań 1986, Teubner-Texte zur Math. 103 (1988), 170-177. (1986) Zbl0712.47044MR1066532
  6. Kolomý J., Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202-204. (1984) MR0740171
  7. Preiss D., Zajíček L., Stronger estimates of smallness of sets of Fréchet nondtfferentiability of convex functions, Proceedings of the 11-th Winter School, Supplement Rend. Circ. Mat. Palermo (Ser. II) (1984). (1984) Zbl0547.46026MR0744387
  8. Zajíček L., Sets of σ -porosity and sets of σ -porosity ( q ) , Čas. Pěst. Mat. 101 (1976), 350-359. (1976) Zbl0341.30026MR0457731

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.