Characterization of chaos for continuous maps of the circle
Commentationes Mathematicae Universitatis Carolinae (1990)
- Volume: 031, Issue: 2, page 383-390
- ISSN: 0010-2628
Access Full Article
topHow to cite
topKuchta, Milan. "Characterization of chaos for continuous maps of the circle." Commentationes Mathematicae Universitatis Carolinae 031.2 (1990): 383-390. <http://eudml.org/doc/17856>.
@article{Kuchta1990,
author = {Kuchta, Milan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {iteration; continuous maps of the circle; chaos in the sense of Li and Yorke; scrambled set; periodic point},
language = {eng},
number = {2},
pages = {383-390},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Characterization of chaos for continuous maps of the circle},
url = {http://eudml.org/doc/17856},
volume = {031},
year = {1990},
}
TY - JOUR
AU - Kuchta, Milan
TI - Characterization of chaos for continuous maps of the circle
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1990
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 031
IS - 2
SP - 383
EP - 390
LA - eng
KW - iteration; continuous maps of the circle; chaos in the sense of Li and Yorke; scrambled set; periodic point
UR - http://eudml.org/doc/17856
ER -
References
top- L. Block, Periods of periodic points of maps of the circle which have a fixed point, Proc. Amer. Math. Soc. 82 (1981), no. 3, pp. 481-486. (1981) Zbl0464.54046MR0612745
- L. Block J. Guckenheimer M. Misiurewicz L. S. Young, Periodic points and topological entropy of one-dimensional maps, in book: Global theory of dynamical systems, (Proc. Internal Conf., Northwestern Univ., Evanston, III., 1979, p. 18-34. Lecture Notes in Math. 812, Springer, Berlin 1980 (1979) MR0591173
- R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Second Edition, Addison-Wesley, New York 1989. (1989) Zbl0695.58002MR1046376
- R. Ito, Rotation sets are closed, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, pp. 107-111. (1981) Zbl0484.58027MR0591976
- K. Janková J. Smítal, Characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), no. 2, pp. 283-292. (1986) MR0854575
- M. Kuchta J. Smítal, Two point scrambled set implies chaos, in book: European Conference on Iteration Theory, (ECIT 87), World Sci. Publishing Co., Singapore. MR1085314
- T. Y. Li J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, pp. 985-992. (1975) Zbl0351.92021MR0385028
- M. Misiurewicz, Periodic points of maps of degree one of a circle, Ergod. Th. & Dynam. Sys. 2 (1982), no. 2, pp. 221-227. (1982) Zbl0508.58038MR0693977
- M. Misiurewicz, Twist sets for maps of the circle, Ergod. Th. & Dynam. Sys. 4 (1984), no. 3, pp. 391-404. (1984) Zbl0573.58019MR0776876
- J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), no. 1, pp. 269-282. (1986) MR0849479
- A. N. Šarkovskii, On cycles and the structure of a continuous mapping, Ukrain. Mat. Ž. 17 (in Russian) (1965), pp. 104-111. (1965) MR0186757
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.