On the Hammerstein integral equations in Banach spaces

Janusz Januszewski

Commentationes Mathematicae Universitatis Carolinae (1990)

  • Volume: 031, Issue: 4, page 685-691
  • ISSN: 0010-2628

How to cite

top

Januszewski, Janusz. "On the Hammerstein integral equations in Banach spaces." Commentationes Mathematicae Universitatis Carolinae 031.4 (1990): 685-691. <http://eudml.org/doc/17889>.

@article{Januszewski1990,
author = {Januszewski, Janusz},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonlinear integral equations; Banach spaces; measures of non-compactness},
language = {eng},
number = {4},
pages = {685-691},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the Hammerstein integral equations in Banach spaces},
url = {http://eudml.org/doc/17889},
volume = {031},
year = {1990},
}

TY - JOUR
AU - Januszewski, Janusz
TI - On the Hammerstein integral equations in Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1990
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 031
IS - 4
SP - 685
EP - 691
LA - eng
KW - nonlinear integral equations; Banach spaces; measures of non-compactness
UR - http://eudml.org/doc/17889
ER -

References

top
  1. Ambrosetti A., Un ieorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-369. (1967) MR0222426
  2. Azbieliev N. V., Caliuk Z.B., Ob integralnych nieravienstvach, Matem. Sbornik 56 (1962), 325-342. (1962) MR0140907
  3. Daneš J., On Densifying and Related Mappings and Their Application in Nonlinear Functional Analysis, Theory of Nonlinear Operators, Akademie-Verlag, Berlin 1974, 15-56. (1974) Zbl0295.47058MR0361946
  4. Deimling K., Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math. 596, Berlin, Heidelberg, New York, 1977. (1977) Zbl0361.34050MR0463601
  5. Heinz H. P., On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Analysis 7 (1983), 1351-1371. (1983) Zbl0528.47046MR0726478
  6. Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integral Operators in Spaces of Integrable Functions, Moskva 1966. (1966) 
  7. Mönch H., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, J. Nonlinear Analysis 4 (1980), 985-999. (1980) Zbl0462.34041MR0586861
  8. Szufla S., Existence theorems for L p -solutions of integral equations in Banach spaces, Publ. Inst. Math. 40, 54 (1986), 99-105. (1986) Zbl0626.45019MR0883938
  9. Szufla S.: Appendix to the paper, Existence theorems for Lp-solutions of integral equations in Banach spaces, Publ. Inst. Math. 43, 57 (1988), 113-116. (1988) Zbl0658.45019MR0962261

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.